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There is an alarming increase in the population of ticks and
tick-borne diseases (TBDs), some of which are fatal. Due to
limited training, healthcare providers cannot always accurately
identify ticks and their associated illnesses, leading to delayed
diagnoses and treatments. The prevalence rates of different
disease-causing pathogens vary based on geographic locations
within the United States. A convolutional neural network
(CNN) was built for combining real-time tick-species
identification with location-based tick-risk assessment by
embedding the Pennsylvania Tick Research Lab’s
spatio-temporal tick surveillance statistics. With DETICKT IT,
an iOS app developed in Swift with a Python backend, users
can now receive an accurate and conclusive analysis to
determine whether they are at risk of contracting a certain
TBD. The app was able to accurately identify three tick species:
Ixodes scapularis (Eastern blacklegged tick), Amblyomma
americanum (Lone star tick), and Dermacentor variabilis
(American dog tick). The overall accuracy rate of the model is
approximately 80%. This app shows promise in assisting tick
bite victims with their decision of seeking further medical
assistance, particularly those with underlying health
conditions.

I. INTRODUCTION

More than one million people are bitten by ticks each
year in the United States [1]. The Centers for Disease
Control and Prevention report that 50,000 people are
diagnosed with tick-borne diseases (TBD) each year [2].
Moreover, underreporting discovered by various studies [3]
suggests that the real incidence rate is much higher, closer to
~500,000. Tick exposure and bites are also associated with
other diseases, such as Pediatric Autoimmune Encephalitis
Associated with Streptococcal Infections (PANDAS), Basal
Ganglia Encephalitis (BGE), and other encephalopathies [4,
5]. In some cases, tick bites can lead to TBDs, such as
Anaplasmosis, Babesiosis, Bartonellosis, Lyme Disease
(LD), Chronic Lyme Disease (CLD), Post-Treatment Lyme
Disease (PTLD), Ehrlichiosis, Tick-Borne Relapsing Fever
(TBRF), Tularemia, Mycoplasmosis, Rocky Mountain
Spotted Fever (RMSF), Powassan virus, and Southern
Tick-Associated Rash Illness (STARI) [6, 7]. Despite
existing antibiotic treatments, diseases such as LD and
PTLD can become chronic if not treated immediately [8].
Moreover, LD, CLD, and PTLD account for more than 1.2
million affected people in the U.S. [9].

Traditional diagnostic methods have used species
classification of ticks to inform whether a person is at risk of
contracting a TBD, primarily LD. However, there is no
direct correlation between a certain species of tick and the
TBD that the species carries, since the risk factors vary
greatly for both tick lifecycle and geographic location.
Clinical studies of patients presenting with a tick bite in
Lyme-endemic areas have shown that the prevalence of LD
in all species of ticks range from 0% to 50% of the time

1

[10]. This includes the notorious biting arachnid Eastern
blacklegged tick. With this degree of uncertainty, it is
necessary to couple real-time identification with
location-specific incidence rate data. Connecting these
datasets in one platform is beneficial, since the general
public and healthcare professionals alike find tick
recognition challenging due to the large number of different
species known [7]. There are 84 species of ticks in the U.S.
alone, with significant variations in sizes and colors within
each species (Figure 1). In fact, one study has shown that
when a group of medical practitioners was asked to identify
I. scapularis, one of the main carriers of LD, the accuracy
rates were as low as 10.5% [11]. Correct identification
requires in-depth entomological training. Given the limited
knowledge in this field and the pressing health concerns
worldwide over TBDs, deep learning-based models hold
promise for the instantaneous assessment of TBD risks

based on specimen determination and prevalence analytics.
Figure 1. Sample selection of photos of female and male A.

americanum, I. scapularis, and D. variabilis ticks that were used for
training. Varying distinctive features of each species and sex are shown.

II. METHODS

Convolutional Neural Network (CNN) and Embedded
Heuristics / Risks Assessment

Google Images, Global Biodiversity Information Facility,
and iNaturalist were used to collect images of three species
of ticks: I. scapularis, A. americanum, and D. variabilis
(Figure 1). At least 200 images per species were used to
train the CNN (600 total) and 150 additional images per
species were used to test the CNN (450 total; 1,050 overall).
Each image contained only one tick. Equal distributions of
both sexes of ticks as well as a balance of engorged ticks
(those that have ingested a large amount of blood from an
animal or human and have a globular shape) were used
during training and testing for each species. After
comprehensive cleaning, the photos were used to train a
CNN with a transfer learning approach and stochastic
gradient descent as the optimization algorithm implemented
in Python, open-source Keras, and TensorFlow 2.5.0 [12].
Keras InceptionV3 was utilized for the network’s
architecture, a method widely used for image classification
[12]. Other network details for a total of 21,808,931
(21,774,499 trainable and 34,432 non-trainable) parameters
were as follows: learning rate, 0.01; momentum, 0; weight
initialization, ImageNet; class weights, equally balanced;
and loss metric, categorical cross-entropy. After images were
collected, they were closely examined to ensure that there
was no grouping of other species within the searches or
when the photos were downloaded. All photos were cropped
to 160 × 160 px with Keras to enhance the training accuracy
of the model. Out-of-focus images or photos with
indistinguishable ticks were discarded from the dataset.



The tick classifier was then linked to the Pennsylvania
Tick Research Lab’s Surveillance Program (TSP). This study
has tested 64,970 ticks (as of 9/25/22) in the U.S. and other
territories, and each state was given a categorical risk: deer
tick or non-deer tick. Deer ticks are carriers of Lyme
Disease, while non-deer ticks (ie: dog ticks) are often about
double the size of deer ticks and are carriers of less known
(but non-LD) pathogens. Of note, I. scapularis was
categorized as a deer tick, whereas A. americanum and D.
variabilis were classified as non-deer ticks. A function to
provide the tick risk was built using Google Colab(oratory)
calling the TSP. Based on the geographic location from
where a tick photo was uploaded, incidence rate surveillance
data from the TSP were accessed live to determine the
disease risk associated with a given tick found in that
particular state. Notably, the TSP only reports the incidence
rates of Babesiosis and Mycoplasmosis found in deer ticks
(I. scapularis); RMSF, Tularemia, Ehrlichiosis, and STARI
found in non-deer ticks (A. americanum and D. variabilis).
LD, Anaplasmosis, Powassan virus, Bartonellosis, and
TBRF found in both types of ticks in each state.

iOS Swift Development
DETICKT IT was developed in Xcode with Swift and

within a service-oriented architecture. After the CNN model
(Figure 2) was ported from a local environment to Amazon
Web Services (AWS), open application programming
interfaces were created for functions, such as location finder,
risk assessment, and specimen identification. Using this
approach, DETICKT IT is able to scale through AWS

Lambda,
delivering
results to
the app’s
users in
mere
seconds.

Figure 2. Schematic approach for DETICKT IT. DETICKT IT’s CNN
uses transfer learning and embedded heuristics / risk assessment

implemented in Python / TensorFlow, while the iOS app itself is coded in
Xcode / Swift.

III. RESULTS AND DISCUSSION

CNN training and validation accuracy, which is the
proportion of correct predictions used to validate the
generalization ability of the model, increased gradually
across training epochs. It also performed well with a

validation accuracy of 99.71% (Figure 3), using k-fold
cross-validation with split training, testing, validation sets
and a well-balanced distribution of the underlying data.
While low bias and high variance may cause overfitting,
high bias and low variance, in contrast, may prevent the
model from obtaining sufficiently low errors in the training
data (underfitting). Specifically, training the model for more
epochs would result in low bias and high variance, while, by
contrast, training it for fewer epochs would produce a high
bias and low variance. The model’s complexity was
effectively altered using k-fold cross-validation for
regularization – with the overall accuracy of the model being
over 85%.

Figure 3.  Accuracy and loss metrics for the tick identification CNN.
Plots of the training (blue) and validation (orange) accuracies (A) and loss

metrics (B) for the CNN are shown. n= 10 epochs.

Users can open DETICKT IT, take a photo of the tick they
encounter, and instantly receive a comprehensive risk
(potentiality) assessment of possible TBDs given the
geo-locational heuristics paired with disease incidence rates
derived from TSP (Figure 4). This is done based on the
photo’s geotag, which identifies the specific location of
where the photo was taken or where the tick was found.

Figure 4.  DETICKT IT App User Interface (UI). (A) Home / Launch
screen, (B) camera feature to take a photo of a tick, (C) tick identity based

on species determined, and (D) full location-based risk assessment given the
geotag from a photo of the I. Scapularis or the blacklegged tick.

In conclusion, this mobile app has the potential to
significantly outperform the reported ability of medical
professionals to accurately classify ticks [11]. Moreover, the
embedded tick risk assessment feature allows users to gain



awareness of the risks associated with a given tick bite in a
certain geographic area, in real time. The knowledge and
confidence afforded by this easy-to-use app will facilitate
medical professionals’ diagnostic accuracy and shorten
critical time-to-treatment for tick bite victims. This app has
the potential to provide a better quality of life for affected
individuals.

Going forward, DETICKT IT will be trained to identify
additional species of ticks and extend to other countries for
geography-specific risk assessment, and the app will also
give users the ability to upload photos of ticks taken outside
the app as well. Moreover, there will also be clinical
resources for suggesting a compound risk score for persons
bitten by a tick and identified by- or crowd-screened via
DETICKT IT.
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