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Abstract— High-energy solar superstorms can disrupt
commercial, telecommunications, and energy infrastructure,
posing a considerable risk to electronics in everyday life.
Scientists have created deep-learning algorithms that can
predict future solar superstorms, but these methods fail to
incorporate numerical and visual data simultaneously. To
increase the accuracy of deep-learning algorithms predicting
solar flares, this paper proposes a deep-learning algorithm,
SOFAA (Solar Flare Anticipation Algorithm), combining
numerical telemetry and photos taken of the sun from the SDO
(Solar Dynamics Observatory) and SOHO (Solar &
Heliospheric Observatory) satellites. The SOFAA used data
from the SOHO’s total solar irradiance (TSI) measurements,
measurements of energy from helium and hydrogen ions and
electrons, and the SDO’s solar images in the Fe IX ion
spectrum. All data was taken in 2017, from January 1 to
December 31. By utilizing GoogLeNet and multilayer
perceptron models, the SOFAA achieved a loss value of 0.1255,
demonstrating the ability to predict TSI values indicative of a
solar flare a day in advance. In short, the incorporation of both
numerical and visual data can give more accurate predictions
of solar flare activity.

I. INTRODUCTION

As the world becomes more reliant on electronic
devices, the threat of solar superstorms grows increasingly
relevant. High-energy solar superstorms—large ejections of
charged particles and electromagnetic radiation [1]—exhibit
a sporadic and hard-to-predict behavior that can threaten to
shut down electrical grids; damage satellites, GPS systems,
smartphones, solar cells, and telecommunication cables;
disrupt avionics systems in airplanes; and disturb cellular,
radio, and radar systems if proper measures are not taken to
mitigate the effects [2, 3]. As such, scientists have made it
an imperative to monitor the activity of the sun in order to
predict the coming of a damaging superstorm. One of the
ways scientists have analyzed data from tools like the Solar
Dynamics Observatory (SDO) and the Solar & Heliospheric
Observatory (SOHO) is by extracting patterns for
predictions of storms through deep learning algorithms.
Because these algorithms can detect hidden but noticeable
patterns and relations between events, deep-learning
programs are uniquely suited to solve the issue of solar flare
and storm prediction [4]. However, previous models fail to
make efficient use of all datasets available to them to make
optimally accurate predictions.

Therefore, developing an accurate AI model for solar
storm prediction with non-visual telemetry is vital to
preventing the widespread destruction of the electrified
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global systems that support lives around the world. The
Solar Flare Anticipation Algorithm, or SOFAA, was
constructed in this study to respond to the rising awareness
of the threat of high-energy solar storms on human
transportation, communication, and commerce electronics.
The aim of this paper is to improve prediction of solar
storms by combining visual and non-visual data elements
from the sun.

II. MATERIALS AND METHODS

To create the training data set, this study used data from
the SDO’s AIA channel 171, recording the electromagnetic
radiation from the ion Fe IX to provide visual data for the
deep learning program’s image processing [5]. The imaged
wavelength provided simple gold-scale contrast for the
program to derive patterns, specifically that of how the
appearance of the sun prior to solar events changes from
baseline solar appearance. The numerical data from the
SOHO’s COSTEP/EPHIN instruments were used to analyze
how the energy of hydrogen ions emitted by the sun shifts as
a solar event draws near and occurs, while the same from the
SOHO’s VIRGO was used as an indicator of solar flare
presence, as average TSI peaks during solar flare events [6].
All data was derived from 1 January 2017 to 31 December
2017 because an X8.2 level solar flare occurred in 2017,
serving as a good training dataset for the appearance of a
large solar flare [7]. VIRGO instrument data was taken
hourly; COSTEP/EPHIN instrument data was taken every
five minutes; and AIA instrument data was taken about
every three minutes. All data points from the
COSTEP/EPHIN instrument and AIA instrument were
averaged and associated with an hour of a day in accordance
with the VIRGO instrument data to sync the data up with
each other.

The perceptron, proposed by Frank Rosenblatt in 1957
and serving as the basic building block of deep-learning
algorithms, is defined by a single equation, Wx + b, where
W is weight and b is bias. The perceptron randomly sets a
weight and bias value, inputs a training data input value for
x, calculates the output, finds the difference between the
predicted output and actual training data output, and
performs those steps for each input value until the
differences in all predicted outputs and actual outputs can be
calculated into a loss value. The algorithm then resets the
weight and bias values in a direction that reduces the loss
value and repeats the previous steps again, effectively
reducing the loss value to replicate a pattern in the data set.
However, the line defined by the perceptron equation cannot
predict all patterns as Rosenblatt thought, so a more complex
structure of many perceptrons was needed.



Figure 1. Multi-layer perceptron layer, input, and output structure

To resolve the shortcomings of the single-layer
perceptron, the multilayer perceptron, or MLP, was invented.
An MLP is composed of many perceptrons interconnected in
webs with each other and one or more inputs and outputs.
An MLP is organized into three “layers”: an input layer that
processes the raw input data, hidden layers that further
process the input layer results, and an output layer that
transforms the values from the hidden layer into meaningful
output values. Due to the scalable nature of MLPs, they are
able to derive complex patterns from any numerical data set.

Figure 2. Deep-learning algorithm loss calculation method; blue line is
training data set, red dots are predictions by the program, and red lines are
the difference between the predicted data and the actual training data, also

known as loss

Loss functions are mathematical functions that allow
algorithms to calculate loss values measuring the deviation
that the program predictions have from the training data
presented. There are several types of loss functions, two of
which are mean absolute error, MAE, and mean squared
error, MSE. The following equation models MAE, given n is
the sample size, yi is the prediction value, and xi is the actual
value:
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The following equation models MSE, given the same
variables above:
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The MAE loss function tends to adapt to large outliers
less and gives greater corrective weight to small errors,
while the MSE loss function amplifies and thus corrects to
large outliers more due to squaring results. Regardless of the
method, loss functions turn the comparisons between the
outputs of the algorithm and those of the training data set
into a score, the loss value, which the algorithm attempts to
lower by adjusting the weight and bias values.

Figure 3. Convolutional layer processes; images are broken apart into
three color channels, the convolution layer values are stacked and

multiplied to every value underneath it at every possible position, and the
resultant multiplied values are added up to create one value in the result

matrix.

A convolutional neural network, or CNN, is an
algorithm that replicates the way in which the human brain
processes visual information. Like the actual brain, CNNs
are used by computers to process images in a way
understandable to itself. CNNs are made up of three parts: a
convolutional layer, which breaks the image into RGB
channels and runs the pixel values through filter matrices, a
pooling layer, which removes outlier values skewing
patterns from the final convolutional layer results, and a
fully connected layer, an MLP that finds patterns in the
numerical values of the final result matrix. It is through this
algorithm that images can be processed by computers.

GoogLeNet is Google’s rendition of a CNN that
resolves previous issues with CNNs overfitting, where the
algorithm finds patterns too specific to the training data set.
GoogLeNet averts overfitting by diversifying the module
architectures that make up the CNN’s convolutional layer,
removing repetitive and pointless actions in the CNN to
ensure faster pattern retrieval. GoogLeNet is implemented
into the Tensorflow-Keras AI program [8].



Figure 4. SOFAA deep-learning algorithm architecture

SOFAA is a combination of the GoogLeNet CNN and
the individual MLP architectures. The SOFAA runs the SDO
satellite’s AIA solar images through the GoogLeNet CNN
and the SOHO satellite’s COSTEP proton energy level
measurements through an MLP to get so-called “features,”
or patterns, from the input data. These features are
concatenated, or combined, into a single feature set, which is
then run through another MLP to get the final predicted TSI
measurements to be compared with those of the SOHO
satellite’s VIRGO instrument. Three variables were changed
to see their effects on the resultant loss value: loss function
used, sample size, and dense layer arrangements and types.
The loss values used to evaluate the effectiveness of variable
changes were run through another MAE function to create
comparable values. The training data TSI values were
pushed forward one day to test for the SOFAA’s ability to
predict TSI values one day into the future.

III. RESULTS

The loss values for all trials of the SOFAA model were
less than 1, indicating high correlation between solar
imaging patterns, charged proton intensity telemetry values,
and TSI values from the sun. Differing dense layer sizes also
did not affect the amount of loss experienced with the
model. For the most part, an increase in sample size resulted
in lower loss values, although by an arguably negligible
amount. Loss remained consistent after slight variation in
loss in the first epoch. This may indicate high correlation in
the values of the three datasets, as finding patterns was of
such ease that the ideal weight and bias values resulted after
just one epoch. For sake of brevity, the number of epochs
was reduced to 7.

TABLE I. SOFAA MODEL EXPERIMENTATION RESULTS (7 EPOCHS)

Trial
#

Data point
sample size Dense layers MAE/MSE Loss Value

1 2000 100-300-100 MAE 0.3329
2 2000 100-300-100 MSE 0.1283
3 2000 100-300-900-500-100-100 MAE 0.3329
4 2000 100-300-900-500-100-100 MSE 0.1283
5 6000 100-300-100 MSE 0.1274
6 10000 100-300-100 MSE 0.1255

After verifying the ability of the program to find
correlations between data taken at the same time,
experiments displacing the TSI data by one day forward
were performed. With 7 epochs, a 10000 data point sample
size, 100-300-100 format dense layers, and an MSE loss
calculation method, the SOFAA model was able to find
synergy between solar imaging, proton intensity telemetry
measurements, and TSI measurements a day into the future,
as low loss indicates the ability of the program to find a
pattern or correlation in the data input and output. The
lowest loss value achieved was 0.1257.

Figure 5. SOFAA model experimentation results chart

IV. CONCLUSION

In this study, the SOFAA model was created and refined
with the goal of combining visual and numerical solar data
to increase the accuracy of solar flare predictions. With the
advancement of technology in the modern era, many more
opportunities to ensure the security of human infrastructure
have presented themselves. The SOFAA’s results show
promise in its ability to predict the value of TSI one day into
the future when given solar imaging and proton energy
intensity value data, predicting within a reasonable margin
of error and loss of 0.1257. With the predicted TSI
measurement, the determination of whether a solar flare will
occur or not and of what intensity can be derived with a
large amount of confidence, allowing for advance notice of
solar flares.

V. DISCUSSION

The SOFAA helps illuminate visual and numerical data
concatenation as an important path to improving solar flare
prediction moving forward. Most solar flare prediction
model proposals still restrict themselves to the analysis of
visual data and qualitative feature sets. Through the
correlation found between the concatenated data set and the
future TSI value of the sun here, the creation of a prediction



model for solar flares utilizing concatenated data sets is not
far away.

However, despite the successes of the SOFAA model,
there remains ample room to expand and further push the
model to serve greater and more demanding purposes. In its
current state, the prediction values for TSI from the sun must
be analyzed manually to check for the probability of a solar
flare or storm occurring. In most cases, this analysis would
still require additional processing time. Another set of
algorithms to further derive patterns in the TSI
measurements to determine solar superstorm probability
would solve this issue efficiently and quickly. Although the
SOFAA model has low loss values in its predictions, there
may still be concern about the verity of such results.
However, due to the unknowable nature of the mechanisms
in deep-learning algorithms, deriving an easy way to further
analyze and interpret the resulting data is difficult. One way
to increase certainty in the results besides directly analyzing
the data is to cross-examine the results of the SOFAA model
with other models of a similar nature, like that of the Deep
Flare Net (DeFN) model, to check for similar results and
rule out discrepancies manually as needed. Another way to
improve the SOFAA model’s verity would be to add more
datasets into the pool of solar telemetry data used by
SOFAA. By adding more solar telemetry data in the model,
SOFAA would be able to further ensure that the patterns it
does detect are noticeable and common across all analyzable
elements of the sun. One more method to improve accuracy
of SOFAA model result data would be to utilize the true skill
statistics (TSS), a metric of discrimination performance,
used to evaluate the DeFN model, as the TSS skill score
considers many more factors, including loss, to help give an
operational “skill score” of the TSS reflective of actual
prediction performance in practical situations [9]. Overall,
the SOFAA model demonstrates the great potential for solar
flare prediction software improvement, which lies in the
concatenation of different data set types by reinforcing
trends present in both data sets and diminishing those only
present in singular data sets.
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