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 Abstract— Natural disasters ravage the world's cities, valleys, 

and shores constantly. Having precise and efficient mechanisms 
for assessing infrastructure damage is essential to channel 
resources and minimize the loss of life. Using a dataset that 
includes labeled pre- and post- disaster satellite imagery, we 
train multiple convolutional neural networks to assess building 
damage on a per-building basis. We present a highly 
interpretable deep-learning methodology that seeks to explicitly 
convey the most useful information required to train an accurate 
classification model. Our findings include that ordinal-cross 
entropy loss is the most optimal loss function to train on and that 
including the type of disaster that caused the damage in 
combination with a pre- and post-disaster image best predicts the 
level of damage caused. Our research seeks to computationally 
aid in this ongoing humanitarian crisis. 

I. INTRODUCTION

Natural disasters devastate countless vulnerable 
communities and countries annually, killing on average 
60,000 people each year worldwide [5]. The timely allocation 
of resources in the event of these tragedies is crucial to saving 
lives. The frequency and severity of these disasters will only 
continue to increase, exacerbated by climate change [6]. The 
catastrophic impact of natural disasters and their increasing 
prevalence motivates the problem addressed in this work. 
Deep neural networks (DNNs) have been used to locate and 
classify building damage within satellite imagery [2]. 
However, the current literature is limited in interpreting what 
exactly these neural networks are learning and identifying key 
predictors for assessing building damage. Thus, we present a 
novel analysis of the most important information that a deep 
learning model needs to assess building damage. We use a 
convolutional neural network (CNN) architecture called 
residual neural network (ResNet), pre-trained on ImageNet 
data. In our approach, we train multiple CNNs on xBD 
satellite imagery data [3] with different modalities of input, as 
well as with different loss functions, and compare accuracy on 
the validation set. We aim to explicitly provide insight into the 
most effective ways to train models to classify levels of 
building damage, maximizing the efficiency of the emergency 
response after a natural disaster, which has the potential to 
save lives and reduce economic strain.  

II. METHODS

 For this work, we utilize the xBD dataset [3], which covers 
a wide range of disasters in fifteen countries. One of xBD's 
main purposes is to demonstrate changes between pre- and 
post-disaster satellite imagery to aid in detecting the damage 
caused. Therefore, each post-disaster building is labeled as 
one of the following: "unclassified," "no damage," "minor 

damage," "major damage," or "destroyed.” The classification 
benchmark utilized is called the Joint Damage Scale (JDS) [3]. 
We use the xBD dataset because it incorporates a variety of 
disaster and building types, as well as geographical locations 
(for cross-region generalization), allowing for diversity in 
training the model. Additionally, the high-resolution imagery 
allows for detailed change detection between pre- and post-
disaster images. These factors currently make xBD the leading 
dataset for building damage detection using labeled satellite 
imagery [3]. Using the segmentation ground truth masks (sets 
of coordinates constituting building polygons) provided, we 
extract individual building polygons to train on.  

We train a baseline classification model to classify 
buildings by damage level, as defined by the JDS. Post-
disaster images were the only model input. Notably, our 
baseline model does not use change detection because pre-
disaster imagery is not taken as input. The model architecture 
is ResNet18, an 18-layer CNN [4]. This baseline model uses 
the cross-entropy loss function, which is defined as:  

(1) 

where yo,c is a 0/1-binary indicator of whether c, as a label, 
correctly classifies observation o, and po,c is the predicted 
probability that observation o is of the class c. The network is 
trained on 12,800 building crops with a batch size of 32. The 
crops are divided in a 0.8:0.2 ratio for training and validation 
data, respectively. The Adam optimizer, which is for adapted 
learning, is set at a learning rate of 0.001. The model trained 
for 100 epochs on NVIDIA Tesla K80 GPUs.   

We train models that improve upon the performance of the 
baseline model. To do this, we introduce other model inputs, 
namely the pre-disaster image (in combination with the post-
disaster image) and the type of disaster (e.g. volcano, wind) 
that caused the building damage. To train a model that takes 
in both pre-disaster images and their corresponding post-
disaster images, we concatenate the RGB channels of the two 
and use that as input. To train a model that takes in the pre-
disaster image, post-disaster image, and disaster type, we do 
the same, but also concatenate a one-hot encoded 
representation of the disaster type in one of the later layers of 
the CNN. Furthermore, we experiment with other loss 
functions, namely mean squared error loss (MSE) and ordinal 
cross-entropy loss to train these models. We define mean  
squared error as: 
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where b is the batch size, y is the ground truth (a class from 0 
to 3 representing each damage level), and ŷ is the prediction. 
Ordinal cross-entropy loss differs from cross-entropy loss in 
that it considers the distance between the ground truth and the 
predicted class (hence "ordinal"). This function is useful 
because the building damage classification problem involves 
different and increasing levels of damage from “no damage” 
to “destruction.” To implement ordinal cross-entropy loss as 
the loss function, we treat it as generic multi-class 
classification and encode the classes “no damage,” “minor 
damage,” “major damage,” and “destroyed” as [0, 0, 0], [1, 0, 
0], [1, 1, 0], and [1, 1, 1], respectively [1].   

III. RESULTS AND DISCUSSION

In Table 1, we present model accuracy on the validation set 
across nine different models, which are differentiated by three 
different input combinations and three loss functions. The 
baseline model, which is trained with post-disaster data only 
and the cross-entropy loss function, has an accuracy of 59.5%, 
as shown, while the most accurate model has an accuracy of 
74.6%. It is important to note that all models were trained and 
validated on data that is evenly split between building crops of 
each class (no damage, minor damage, major damage, and 
destroyed), so a purely blindly guessing model would achieve 
approximately 25% accuracy.   

TABLE 1. COMPARISON OF VALIDATION ACCURACY ON 9
DIFFERENT MODELS  

Model Input(s) 

Model Accuracy on Validation Set 
Mean Squared 

Error 
Cross-Entropy 

Loss 
Ordinal 

Cross-Entropy 
Loss 

Post-Disaster 
Image

45.3%  59.5%  64.2%  

Post-Disaster 
Image + 
Pre-Disaster 
Image 

50.2% 68.3% 71.2% 

Post-Disaster 
Image + 
Pre-Disaster 
Image + 
Disaster Type 

49.7% 72.7% 74.6% 

Percentages represent model’s validation accuracy given loss function and model input. 

Much of our results confirm our hypotheses. Accuracy on 
the validation set improves when more modes of useful 
information are inputted into the model (accuracy generally 
increases moving down the rows of Table 1). This is justifiable 
given the intuitive assumption that the more information the 
model has to work with, the more accurate predictions it 
should make. A large part of our research addressed which 
types of input aid the convolutional neural networks in making 
accurate predictions. From the generated results, it seems that 
having the aspect of change detection (when the pre-disaster 
image is concatenated with the post-disaster image and 
inputted) is useful, along with the type of disaster. We also 
note that models using ordinal cross-entropy loss as their 
criterion for optimization perform the most accurately. As 
previously mentioned, ordinal cross-entropy loss is most 
specifically applicable for a classification problem that 

involves an ordinal scale (in this case, the JDS), as opposed to 
categories with no intrinsic ordering. MSE, not surprisingly, 
showed itself to be the least effective loss function to use for 
training. This result is justifiable because MSE is primarily 
used in regression problems, not classification problems. We 
find that cross-entropy loss models fall somewhere in 
between.   

However, we note that none of the accuracy numbers are 
necessarily optimal. This can be explained by the fact that the 
differences between categories, particularly between minor-
damage and major-damage, are largely difficult to discern for 
both humans and computers. This is a challenge that comes 
with non-binary classification tasks with building damage, and 
it has been acknowledged by many, including [3]. In addition, 
there is some noisy data in the dataset and cleaning it more 
thoroughly would most likely yield marginally more accurate 
predictions.   

Figure 1: Gradient class activation maps depict which parts of the building 
crop lead the baseline model to predict a certain classification. On the top 
are the original images (crops) and on the bottom are the corresponding 
gradient class activation maps. The images included are only post-disaster 
images. 

IV. CONCLUSION

The main insights that can be drawn from our work include 
using individualized building crops instead of semantic 
segmentation to train models and performing experiments 
with various combinations of model inputs and loss functions 
to explicitly examine their differences. Practically, our work 
(a novel, more interpretable approach) and others in the field 
advance methods for more robust emergency responses and 
more efficient allocation of resources, which saves lives.   
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