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With growing computational abilities, machine learning
is becoming more applicable in drug discovery. However,
the entire process of drug discovery can take over 12
years and cost approximately 2.6 billion dollars,
rendering it intensive in both time and physical
resources. One of the main steps in non-clinical
development is hit identification and discovery, in which
drug molecules with desired efficacies are identified. In
silico modeling of protein expression changes from drugs
could greatly speed this up, as changes in protein
expression determine the effectiveness of drugs. In this
study, a framework has been developed and validated to
predict the impacts of drug molecules on certain
proteins’ expressions through a machine learning
approach. Through the use of three distinct molecular
featurization techniques – molecular fingerprints and
numerical properties extracted using two different
libraries – several machine learning models were trained
to predict the impacts of drugs on protein expression of
Caspase-3. The best result in this study was from a
convolutional neural network (CNN) trained on
molecular fingerprints data, with similar results from
some other algorithms and featurization-methods. The
CNN model made effective generalizations between
drugs and protein expression, demonstrated by its
accuracies on both balanced, (oversampled minority
class) SMOTE-augmented data, and original,
imbalanced test data. This framework can be applied to
early stages of drug discovery to develop more machine
learning models on more proteins and use them to speed
up and cheapen the process through their abilities to
generalize on the relations between drug molecules and
changes in protein expression.

I. INTRODUCTION

Drug discovery/Hit identification
Finding new drugs is a complex problem with a low success
rate [1]. The entire process can take an estimated 12 years
and cost ~2.6 billion dollars [2], with only approximately
2.5% to 5% of drug candidates making it to preclinical
testing, and less than 0.1% of candidates making it to the
clinical phase [3]. Among the drug discovery process is hit
identification and discovery, which involves finding and
validating molecules that result in desired therapeutic effects
[4]. In the case of the Caspase-3 protein, these desired
effects can include increased sensitivity of cancer cells to
chemotherapy and radiotherapy, and inhibition of cancer cell
invasion and metastasis [5]. Existing approaches such as

knowledge-based screening, fragment screening,
physiological screening, and high throughput screening [4]
can be effective but often require expensive, specialized
facilities, or dependence on intuition and expert driven
identification of drug candidates, which does not scale
efficiently or cost-effectively when screening over 10,000
candidates. Moreover, hit identification is limited by
availability or synthesis ability of potential candidates and
the time and cost it takes to access and validate them in the
lab. For instance, if a certain proposed drug candidate (i.e.,
through computational tools) is not commercially available,
then the drug is often discarded unless the proposed
tools/algorithms achieve high predictive accuracy in the
success of the drug candidate.

In order to improve the efficiency of the hit discovery step,
certain methods have been utilized in academic research and
in industry. For instance, Lipinski’s Rule-of-Five serves as a
rule of thumb in preparing the initial list of drug candidates
to be screened. Lipinski’s Rule-of-Five states that an ideal
drug candidate would have less than 5 H-bond donors, 10
H-bond acceptors, a molecular weight of less than 500, and a
calculated LogP less than 5 [6]. When their properties are
outside of these ranges, drugs are more likely to face poorer
absorption and permeation. However, for more data-driven
screening approaches, particularly with often
“all-or-nothing” results [7], it is often challenging to identify
relevant molecular descriptors. Moreover, a drug candidate
could interact with many proteins [8], posing a great
challenge in designing a selective drug candidate. As a result
of these complexities, many drug candidates fail. It is often
difficult to track and quantify the drugs’ interactions with
target proteins [8]. Predicting the impact of a drug candidate
on protein expression is an important challenge in
identifying hit molecules since they influence the therapeutic
effects of the proteins, and thus an effective drug should
achieve desired protein expression (i.e., increasing protein
quantity or, in some cases, inhibiting proteins to deactivate
the protein activity) to achieve desired treatment.

Protein Expression
In this project, the impact of drug candidates on Caspase-3
(CASP3) – a protein involved in cell apoptosis (cell death) –
expression was studied [10]. Activation of CASP3 results in
the cleavage of proteins, causing a process of changes in
cells that eventually leads to their deaths. CASP3 is highly
relevant to tumor-development, which is characterized by a
lack of cell death. As a result, higher levels of activated
CASP3 correlate to increased rates of recurrences and deaths
in cancer patients [11]. Furthermore, CASP3 expression
could predict the biochemical progression of cancer [11].
Essentially, the connections between CASP3 and cell death
can influence the efficacies of certain treatments; for
example, with cases such as MCF-7 in mice – a cell line
observed with breast cancer – increased CASP3 presence
can lead to significantly increased resistance to radiotherapy



because of quicker radiation-induced apoptotic cell death
and thus faster tumor cell repopulation [11].

Machine Learning Algorithms
Machine learning (ML) models can primarily be divided into
supervised and unsupervised ML. In supervised machine
learning, algorithms learn from labeled data, where
algorithms are trained on a dataset to map inputs to outputs.
By learning patterns to map inputs to outputs, the models
can extrapolate to real-life applications with unseen samples.
Unlike supervised learning, in unsupervised machine
learning there are no labels, but rather only data with
features. Through methods such as clustering, unsupervised
algorithms find patterns, rather than necessarily mapping
inputs and outputs, so there is no supervision correcting the
models as they learn. In this project, several supervised
machine learning algorithms were applied to determine the
relationships between drug molecules and their impacts on
protein expression.

II. METHODS AND MATERIALS

Data Processing
The Chemical-Gene Interactions dataset used in this project
was collected from the Comparative Toxicogenomics
Database (CTD) [13]. The dataset contains the following
eleven columns: ChemicalName, ChemicalID, (MeSH
identifier) CasRN (CAS Registry Number, if available),
GeneSymbol, GeneID (NCBI Gene identifier), GeneForms,
Organism, OrganismID (NCBI Taxonomy identifier),
Interaction, InteractionActions, and PubMedIDs.

Data with the CASP3 protein was extracted due to the
protein’s best availability of data points after cleaning (i.e.,
~6,000 of initial points, and ~400 after removing the
duplicates). The CAS Registry Number of the drug
molecule, the organism that the protein was from (e.g.,
Homo Sapiens), and the target (i.e., influence on the protein
expression) were selected in the final dataset.

Data Cleaning
Cleaning of the dataset involved removal of rows with
empty values for any of the features, and removal of
duplicates. Since there were more variables in the original
dataset than just the drugs, there were significant numbers of
duplicates in the extracted data. Furthermore, there were
samples of duplicates with the same features but different
labels. This issue was approached through a voting system,
where the label – which indicated either a decrease or an
increase in expression of certain proteins – that had the
highest number of instances among the same features, would
be selected. For example, if the same drug candidate was
reported six times in the dataset, with four instances being
labeled with increased expression and two with decreased
expression, then the label would be interpreted as increased
expression.

Featurization
Three types of chemical features were generated for the
drugs to convert the Drug IDs into a SMILES representation
and then into molecular descriptors. These three types of
features were molecular fingerprints, and all the numerical
properties of the molecules available from the RDKit library
[14] and the PubChemPy library [15].

The molecular fingerprints (Morgan fingerprints with
radius=2, which is roughly equal to ECFP4) were matrices
of dimensions 1x2048, within which each value was either 1
or 0 depending on the presence of certain
substructures—fragments of the molecules. The dimensions
for the RDKit- [14] and PubChemPy-extracted [15]
descriptors were 1x43 and 1x33, respectively. Along with
this, except for when training the CNN, all the extracted
feature types included an extra column for the protein’s
original organism, numerically encoded. The labels – which
were under the “InteractionActions” column – were either 0
or 1, based on whether protein expression decreased or
increased, respectively.

 Feature engineering
The original dataset was imbalanced in favor of increased
expression. Specifically, after cleaning, ~87% of the samples
had the label “1,” while ~13% had the label “0.” This means
that a hypothetical naïve model that simply always predicts
“1” would result in 87% accuracy on the data. Given that
supervised machine learning algorithms learn data by
minimizing the error on the predicted values versus actual
values, an imbalanced dataset would make it very likely that
ML models simply learn to always predict one output – in
this case, “1” – like a naïve model, rather than actually
learning a pattern to predict the protein expression. By
predicting “1,” the model would already be correct on the
majority of the data thus achieving a low error, finishing its
training without learning any real relationships. This
problem was addressed using the SMOTE algorithm to
oversample the minority class in the form of generating
synthetic data points to be added to the minority class, and
therefore balance the dataset. The process of implementing
SMOTE involved splitting the data into train and test sets
with 10% being the test data, except for certain algorithms
where 20% or 30% test data size was used. Then, SMOTE
was individually applied to each of the train and test sets by
using the “Imbalanced-Learn” (imblearn) library [16]. This
allowed for the trained models to be tested both on the
original data and also on the augmented data with SMOTE.

III. RESULTS AND DISCUSSION

The results on the original and SMOTE-engineered data are
provided in Table 1 and Table 2, respectively, comparing the
three different featurization techniques and six different ML
algorithms.



Out of all the models - based on evaluations of performance
on the original, unaltered test data - the Convolutional
Neural Network, Vanilla Neural Network, XGBoost, and
Random Forest models achieved the best performances in
terms of prediction accuracy, with SVM and Logistic
Regression models also achieving notable performances
when trained on molecular fingerprints data.

Table 1. Model Performances on original unaltered data. The values
represent cross-validated model performances using Molecular Fingerprints,
RDKit descriptors, and PubChemPy descriptors, respectively (e.g.,
99.28/99.82/96.34) for drug molecule featurization. SVM (polynomial)
degree of 11/200/200.

Model Train Accuracy
[%]

Test Accuracy
[%]

CNN 98.03 77.50
ANN 99.44 75
XGB 82.82 / 95.57 /

95.25 65 / 79.75 / 83.52
RF 99.71 / 100 / 100 75 / 70 / 84.78
SVM (Linear) 96.62 70
SVM (RBF) 83.10 / 87.32 /

80.78 72.5 / 82.5 / 67.39
SVM
(Polynomial)

55.21 / 87.04 /
40.625 35 / 82.5 / 50

LR 91.55 / 58.59 /
65.23 72.5 / 50 / 50

Table 2. Model Performances on SMOTE-engineered Data. The values
represent cross-validated model performances using Molecular Fingerprints,
RDKit descriptors, and PubChemPy descriptors, respectively (e.g.,
99.28/99.82/96.34) for drug molecule featurization. SVM (polynomial)
degree of 11/200/200.

Model Train Accuracy
[%]

Test Accuracy
[%]

CNN 97.66 86.36
ANN 99.28 / 99.82 /

96.34 84.85 / 85.51

XGB 90.13 / 97.45 /
97.16

78.79 / 72.49
81.88

RF 99.84 / 100 / 100 84.84 / 60.61
63.75

SVM (Linear) 98.06 81.82
SVM (RBF) 89.00 / 51.78 /

60.65 81.82 / 50 / 41.25
SVM
(Polynomial) 74.27 / 50 / 45.14 60.61 / 50 / 60

LR 95.15 / 63.11 /
71.06

83.33 / 56.06
28.75

SVM models with RBF and Polynomial kernels both
achieved 82.5% accuracy on the test data when RDKit
descriptors were used. However, these can likely be
disregarded because these models resulted in 50%
accuracies on the SMOTE-engineered data. The
SMOTE-engineered data was perfectly balanced, meaning
these models could have always predicted one output. The
82.5% accuracy would have been the result of 82.5% of the
unaltered test data being labeled as the same one output that

these SVM models always predicted. This suggests that
these models did not learn the underlying patterns in the
data, but rather simply performed similar to hypothetical
naïve models. The 84.78% accuracy on the unaltered data
using the Random Forest algorithm can also likely be
disregarded for similar reasons to the seemingly
high-performing SVMs.
Given the equally balanced dataset, many of the algorithms
achieved higher than 80% prediction accuracy on the
SMOTE-engineered test data, with the CNN trained on the
Molecular Fingerprints data performing the best with an
86.36% accuracy. This result is especially promising because
not only was the model not exposed to the data, but also that
data was balanced. This performance shows that the models
clearly identified underlying patterns in the data that
included synthetic minority-class samples. SMOTE is used
in real-life applications as an algorithm that allows for the
creation of synthetic data based on existing samples,
meaning that the generalizations the models learned to make
on the augmented data can likely be applicable and relevant
to real data. This also suggests that patterns in drug
molecules can predict their impacts on protein expression.

Overall, the results had varied accuracies between 75% and
83.52% on the unaltered test data. Based on two key reasons
– performance on unaltered test data and performance on
SMOTE-engineered synthetic data – it can be determined
that the algorithms implemented in this project have found
significant results with real applications. For the unaltered
test data, although 75% to 83.52% accuracies are technically
lower than or similar to the 82.5% baseline accuracy that a
hypothetical naïve model could achieve, the results are still
significant given that the models clearly learned to make
generalizations that worked well on the synthetic data. This
means that the models were not simply naïve and only
predicting one output, and thus their accuracies on the
unaltered test data were authentic, making evident these
models’ potential for real-world applications.

 IV. CONCLUSION
 
Overall, through evaluating several different ML models and
using three different feature extraction methods, this project
demonstrated the possibility of predicting drug effectiveness
on protein expressions using machine learning. Specifically,
it was found that ML algorithms, especially deep learning
algorithms, have a real and promising applicative potential
in making such predictions. Having a larger and more
balanced dataset would allow for more potential use of this
project’s framework, and it can be replicated for different
proteins where large experimental datasets are available. All
three featurization techniques were also considerably
high-level (these featurizations missed more specific
details), and thus they may not have provided all relevant
descriptors in determining protein expression. Along with
using more balanced data, this project could also be
expanded by using quantum mechanical methods for more



descriptive molecular features, such as with Density
Functional Theory (DFT), which would allow for electron
density calculations. By discovering that drugs’ impacts on
protein expressions are predictable, this project offers a
framework for potentially expanding on in silico drug
discovery and thus helping to reduce the need of physical
experimentation, which can often be far more cost-,
resource-, and time-intensive. Overall, achieving this task
computationally is significantly faster and cheaper than
attempting it through only physical experimentation
methods, and this approach offers a complementary tool to
narrow down the numbers of experiments needed.
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Appendix
Code used for this study, hyperparameters of models, other metrics of
models (e.g., precision and recall), and other information are all available
upon request. Please contact the author for any questions or requests.
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