
1

A Generative-Adversarial
Approach to Low-Resource

Language Translation via Data
Augmentation

Linda Zeng1

Abstract—Language and culture preservation are serious
challenges, both socially and technologically. In response to this
issue, this paper takes a data-augmenting approach to
low-resource machine translation, helping to diversify the field
and preserve underrepresented cultures. Since low-resource
languages, such as Aymara and Quechua, do not have many
available translations that machine learning software can use
as a reference, machine translation models frequently make
errors when translating to and from low-resource languages.
Because models learn the syntactic and lexical patterns
underlying translations through processing the training data,
insufficient amount of data hinders them from producing
accurate translations. In this paper, I propose the novel
application of a generative-adversarial network (GAN) to
automatically augment low-resource language data. A GAN
consists of two competing models, one learning to generate
sentences from noise and the other interpreting whether a given
sentence is real or generated. The paper shows that even when
training on a very small amount of language data (< 20,000
sentences) in a simulated low-resource setting, such a model is
able to generate original, coherent sentences, such as “ask me
that healthy lunch im cooking up,” and “my grandfather work
harder than your grandfather before.” This GAN architecture
is effective in augmenting low-resource language data to
improve the accuracy of machine translation and provides a
reference for future experimentation with GANs.

I. INTRODUCTION

Languages play a vital role in preserving cultural beliefs
and traditions. As technology becomes increasingly
prevalent, it is crucial for translation software to reflect the
world’s linguistic diversity, ensuring that valuable cultural
identities are not left behind. However, current
state-of-the-art translation models frequently make mistakes
when translating to and from “low-resource languages” [1],
or languages that do not have enough digital data that
machine learning algorithms can use as reference. For
example, many American indigenous languages, such as
Aymara and Quechua [2], are underrepresented in datasets,
resulting in models trained on them generating incorrect
translations.

Previous approaches have focused on bridging the gaps
between high-resource and low-resource languages through
transfer-learning and cross-lingual pretraining [1]–[3], which
have limited efficacy depending on the similarity between
the high-resource and low-resource languages being used.

1L.Z. is with The Harker School, 500 Saratoga Ave, San Jose, CA 95129
(corresponding author to email: 26lindaz@students.harker.org).

The direction of data augmentation focusing solely on
low-resource language generation has not been fully
explored and holds promise for breakthrough [4].

Artificially increasing the size of datasets with original,
generated samples allows translation models to receive more
variety and volume in training, improving their
generalizability. Both monolingual and parallel data
augmentation is important for Neural Machine Translation
(NMT), which refers to translation powered by neural
networks. Training on monolingual corpora in addition to
parallel data has been used to improve NMT models [5]–[7],
especially in low-resource NMT [8]. As a result, this paper
introduces a system for monolingual data augmentation.

In contrast to the human labor of creating new sentences
in low-resource languages by hand, a generative-adversarial
network (GAN) is capable of autonomously generating as
much new data in a low-resource language as needed.
Previous studies have implemented GANs for machine
translation [9-12], but at the time of our research, no
previous models have used them for translation of
low-resource languages.

In this study, I propose applying a GAN to monolingual
low-resource language data augmentation to improve
translation quality. My model generates new synthetic
language data for low-resource languages and is the first to
combine GANs, data augmentation, and low-resource NMT.

II. MODEL ARCHITECTURE

My design consists of two models: an encoder-decoder
and a GAN, which contains a generator and a discriminator.
Figure 1 displays a preliminary example of the model
workflow.

Figure 1. Overall workflow with basic examples.

First, the encoder-decoder learns to translate from a
source language to the target language using the training
data. In Figure 1, the source language is Spanish, and the
data point is “tengo que irme a dormir.” The encoder
transforms the source language into a latent space
representation, an abstract representation of the sentence’s
meaning, and then the decoder “decodes” the representation



into the target language—in this case, “i have to go to sleep”
in English. Similar sentences are positioned closer together
in this internal latent space, which reflects samples’ external
meanings regardless of language. After the encoder-decoder
finishes training, a batch of sentences in the source language
from the dataset are fed into the trained encoder, and
generates latent space representations. Figure 1 shows a
simplified version of the representation: [1 -4 503 5].

Next, we train the GAN using the encoder-decoder as a
tool, as shown in the left box in Figure 1. The generator
takes in a batch of random noise, a list of randomly
generated numbers between -1 to 1 which, by themselves,
have no meaning (the figure represents noise as gibberish).
Then, the generator tries to create sentence meanings out of
the noise by transforming them into latent space
representations, shown as [2 -434 53 5] in Figure 1.

The discriminator receives either the encoder’s or the
generator’s latent space representation, without knowing
from which model the representation comes from. The
discriminator predicts whether a given encoding is real
(from the encoder) or fake (from the generator), and then
compares its prediction with the encoding’s real label to
evaluate its own performance. Depending on the
discriminator’s success or failure, the generator also adjusts
its weights and learns to create encodings more similar to the
encoder’s in order to fool the discriminator. This process
continues until ultimately, through trial-and-error, the
generator learns to generate latent space representations so
similar to the real ones that the discriminator is not able to
tell them apart. As a result, the generator is able to generate
unlimited new latent space representations from only noise
and no extra data. Like the encoder’s encodings, these
representations can then be decoded by the decoder into real
sentences in the target language.

Figure 2 displays the neural-network architectures
underlying the encoder-decoder, generator, and
discriminator.

Figure 2. Generator, discriminator, and encoder-decoder architectures.

The encoder-decoder uses a long-short term memory
(LSTM) network for both the encoder and decoder.
Long-short term memory (LSTM) networks [13] are a
special type of neural networks that learn when to remember
information that may be important later on in a data
sequence. In NMT, since related words may be placed far
from each other in a sentence, encoder-decoders commonly
use LSTMs because LSTMs can capture the long-term
dependencies between such words.

In between the major LSTM layers of the
encoder-decoder, the embedding layer learns to map words
with analogous meanings to similar numerical vectors, the
repeat vector copies each latent space representation into the
decoder, and the logits layer maps’ numerical outputs into
probabilities. Last, a softmax activation function normalizes
the probabilities, producing the output.

The generator consists of a dense layer, which is a layer
of fully connected units, and a ReLU activation function,
which is commonly used in GANs to optimize efficiency
and capture complex data distributions. The generator’s
main purpose is to learn through trial and error to mimic the
encoder’s encodings despite only being given noise as input.

The discriminator consists of three dense layers and then
a one-unit dense layer, which allows it to produce a
prediction of whether the input is from the encoder or the
generator. Each of these hidden layers include a ReLU
activation function to capture complexity. Finally, the model
uses a sigmoid activation function to categorize its
prediction into a 1 (for encoder) or 0 (for generator). Using
trial-and-error, the discriminator learns how to differentiate
encodings of natural source language data (from the
encoder) from synthetic encodings (from the generator).

The combined GAN model feeds its noise input to the
generator and the generator’s encoding output into the
discriminator. The discriminator’s prediction is used to
update the weights for both models. Ultimately, once both
models optimize their performances, the generator’s outputs
serve as novel data points for data augmentation.

III. DATA

The data used in this study was derived from a Tatoeba
dataset [14] processed by a third-party [15]. The training,
validation and test data were given only to the
encoder-decoder while the GAN operated solely on noise
and the encoder-decoder’s output.

To mimic the characteristics of low-resource languages
using English and Spanish, I reduced the amount of data
from 253,726 sentence pairs to only 20,000. Of the 20,000,
18,000 sentence pairs were used to train the
encoder-decoder, 1,000 were kept as validation data to verify
accuracy and prevent overfitting during the training process,
and the last 1,000 sentence pairs served as test data and were
not seen or used until after training and hyperparameter
tuning for the encoder-decoder. I retained only words,
lowercase, and no punctuation. Using Keras’s built-in
Tokenizer [16], I then split each sentence into a list of
probabilities. I found the longest sentence and padded the
rest with zeros to the same length.

IV. EXPERIMENTAL SETTING

This section describes conditions, procedures,
hyperparameters, and observations relevant to training.

I imported all of the model layers from the Python Keras
library [16]. Through experimentation, I chose the
encoder-decoder’s two LSTM layers to contain 64 units. To
minimize overfitting, I included weight decay, which shrinks
the weights of neural networks, and dropout, which drops
out a few randomly selected neurons during training. These
values were empirically determined for each layer in the
encoder-decoder. For the encoder LSTM, I used a type of
weight decay known as L2 regularization with a value of
5e-5, and a dropout of 0.5. For the decoder LSTM, I used an
L2 regularization of 1e-5 and a dropout of 0.5. The model
was compiled with a categorical cross entropy loss function
and an Adam optimizer [17] with a learning rate of 2e-3 and



weight decay rates of beta1 0.7 and beta2 0.97. The
encoder-decoder trained in batches of 30 samples for 400
epochs on the training data.

Figure 3. Loss and accuracy of the encoder-decoder.

While training, the encoder-decoder reached an accuracy
of 92.8%, and a peak accuracy of 71.4% on validation data.
Figure 3 shows the progression of training and validation
loss and accuracy through epochs.

The generator’s dense layer contained 64 units. The
model was compiled with a categorical cross entropy loss
function and an Adam optimizer with learning rate 4e-4. The
discriminator’s three dense layers each had 1,024 units,
followed by a single-unit layer that represented its
prediction. The model was compiled with a binary cross
entropy loss function and an Adam optimizer with a learning
rate of 1e-4. The combined GAN compiled with a binary
cross entropy loss function and an Adam optimizer with a
learning rate of 1e-4. With a batch size of 1900, the GAN
trained across 8,000 epochs.

Shown in Figure 4, while training, the GAN’s loss values
plateaued for both the generator and the discriminator,
indicating that the models reached convergence and were
both performing optimally against each other. Its final loss
values hovered around 0.581 for the generator and 0.438 for
the discriminator.

Figure 4. Loss of the GAN.

Once the generator and discriminator were performing
optimally, the decoder was run on the generator’s encodings,
converting their meanings into probabilities. Each
probability mapped to the closest word in the tokenizer’s
dictionary of probability word pairs, forming sentences.

Hyperparameter Tuning
In order to find the hyperparameters for optimal results, I

experimented by first varying values by a factor of either 2
or 10 and testing every combination. To optimize for time, I
used 5,000 sentences and 80 epochs. For the learning rates
of the encoder-decoder, generator, discriminator, and GAN,

as well as the weight decay, I tried a range of values from
1e-1 to 1e-8, decreasing in magnitude by a factor of 10 each
time. When varying the number of units and batch sizes for
the encoder-decoder’s LSTM layers, the generator’s dense
layer, and the discriminator’s dense layers, I chose powers of
2 between 16 and 2048. For the encoder-decoder’s dropouts,
I tried a range from 0.5 to 0.8.

After finding the approximate values to optimize
performance, I tested more specific values within the ideal
range I found, isolating each of the models and incrementing
values. Once reaching optimal parameters, I increased the
training data and epochs to further improve the models.

V. RESULTS

Encoder-Decoder Performance
On the test data, the encoder-decoder had a final

accuracy of 69.3%. This accuracy is respectable, considering
the fact that the model was trained on less than 20,000
sentences, which is less than one-tenth of the size of other
low-resource language datasets, whose sizes are between 0.2
to 1 million [3][18].

As this paper focuses more on the data-augmentation
aspect than the machine translation part of this research,
accuracy was used instead of BLEU score [19], a metric that
assesses the quality of a machine translation relative to a
human-curated translation by counting overlapping n-grams.
Using accuracy, the value of incomplete yet coherent
translations could be considered and did not affect results as
strongly as BLEU scores would have caused it to.

GAN Performance
After training, the GAN was able to successfully

generate coherent sentences, such as sentences 1, 2, and 3
labeled “good” in Table 1. Generated samples generally
centered around its own cohesive theme, which is an
indication of the model’s successful understanding of word
meanings. From random noise, the generator was able to
create its own completely new and logical sentences, a
significant feat considering the lack of training data.

Table 1. Raw Samples by the GAN.

Error Analysis and Future Work
The model made a series of errors, shown in lines 4–7 in

Table 1. The severity of errors decreased as the GAN trained
for more epochs. Thus, future models may train for a larger
number of epochs to examine whether errors can be reduced
further. I propose future work for three main errors: repeated
words, nonsensical grammar, and unrelated words.



Repeated words occur in most MT models due to the
model trying to generate words that are close in context to
each other, which is necessary [20]. Once the decoder
translates the latent space representations into probabilities,
they may be reduced to the same word. Future work should
involve training the model to remember the previous
probabilities it generated and to vary them.

Some sentences are grammatically incorrect or
nonsensical with randomly placed words. Due to the
low-resource setting, the model did not learn enough context
to understand how to place these words. For example, in
Table 1, the model predicted “weird” to follow “cheerful.”
The model likely assigned similar embeddings to these two
words since they are both adjectives that may have been
used in comparable contexts. However, while the adjectives
may be used interchangeably as modifiers for a person, they
cannot follow each other directly. Future work should
attempt to train the model on which semantically related
words can be placed together syntactically.

The model occasionally groups unrelated words together.
It has not seen a word (e.g. “gloves” in Table 1) enough to
understand its usual context (i.e. being put on people’s
hands). Future work should focus on incorporating a
dictionary of words into the model so that it better
understands words’ meanings.

In the future, I plan to post-process the samples by
cleaning and inserting punctuation and capitalization. I also
plan to test this method’s performance in a true low-resource
setting.

VI. CONCLUSION

This work takes strides to address data inequality in
neural machine translation, using a generative-adversarial
approach to augment low-resource languages. Experiments
show promising results: using less than 20,000 sentences,
the GAN was able to generate unlimited, coherent sentences.
These new sentences can be added to the original corpus to
improve the accuracy of machine translation. Improvements
can be made on this research to increase comprehensiveness
when evaluating the model’s performance and to minimize
the repetition and incoherence in many of the generated
sentences.

This innovative approach has the potential to bring about
more robust language translations for minority populations.
Because of this GAN architecture's ability to generate an
unlimited amount of original sentences despite being trained
on minimal data, it can be used as an effective tool to
augment low-resource language data, allowing translation
software to train on more sentences and therefore generate
more accurate translations. The next steps of this research
are to explore this model’s feasibility on a variety of
low-resource languages from a diverse set of language
families. This novel application of a GAN to low-resource
language translation serves as a reference for future work
that combines GANs and Natural Language Processing,
specifically MT.

VII. ACKNOWLEDGEMENT

I would like to thank my teachers, Anu Datar and Ricky
Grannis-Vu, for their ongoing support and encouragement.

VIII. REFERENCES

[1] J. Gu, H. Hassan, J. Devlin, and V. O. Li, “Universal neural machine
translation for extremely low resource languages,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 344–354. [Online]. Available:
https://aclanthology.org/N18-1032

[2] F. Zheng, M. Reid, E. Marrese-Taylor, and Y. Matsuo, “Low-resource
machine translation using cross-lingual language model pretraining,” in
Proceedings of the First Workshop on Natural Language Processing for
Indigenous Languages of the Americas. Online: Association for
Computational Linguistics, Jun. 2021, pp. 234–240. [Online]. Available:
https://aclanthology.org/2021.americasnlp-1.26

[3] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for
low-resource neural machine translation,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp.
1568–1575. [Online]. Available: https://aclanthology.org/D16-1163

[4] M. Fadaee, A. Bisazza, and C. Monz, “Data augmentation for
low-resource neural machine translation,” in Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Vancouver, Canada: Association for
Computational Linguistics, Jul. 2017, pp. 567–573. [Online]. Available:
https://aclanthology.org/P17-2090

[5] J. Zhang and C. Zong, “Exploiting source-side monolingual data in
neural machine translation,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, Nov. 2016, pp. 1535–1545.
[Online]. Available: https://aclanthology.org/D16-1160

[6] R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine
translation models with monolingual data,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 86–96. [Online]. Available:
https://aclanthology.org/P16-1009

[7] D. Cai, Y. Wang, H. Li, W. Lam, and L. Liu, “Neural machine
translation with monolingual translation memory,” in Proceedings of
the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 7307–7318. [Online].
Available: https://aclanthology.org/2021.acl-long.567

[8] A. Currey, A. V. Miceli Barone, and K. Heafield, “Copied monolingual
data improves low-resource neural machine translation,” in Proceedings
of the Second Conference on Machine Translation. Copenhagen,
Denmark: Association for Computational Linguistics, Sep. 2017, pp.
148–156. [Online]. Available: https://aclanthology.org/W17-4715

[9] Z. Yang, W. Chen, F. Wang, and B. Xu, “Improving neural machine
translation with conditional sequence generative adversarial nets,” in
Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 1346–1355.
[Online]. Available: https://aclanthology.org/N18-1122

[10] Z. Zhang, S. Liu, M .Li, M. Zhou, and E. Chen,“Bidirectional
generative adversarial networks for neural machine translation,” in
Proceedings of the 22nd Conference on Computational Natural
Language Learning. Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 190–199. [Online]. Available:
https://aclanthology.org/K18- 1019

[11] Z. Yang, W. Chen, F. Wang, and B. Xu, “Unsupervised neural machine
translation with weight sharing,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:

https://aclanthology.org/N18-1032
https://aclanthology.org/2021.americasnlp-1.26


Long Papers). Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 46–55. [Online]. Available:
https://aclanthology.org/P18-1005

[12] A. Rashid, A. Do-Omri, M. A. Haidar, Q. Liu, and M.
Rezagholizadeh, “Bilingual-GAN: A step towards parallel text
generation,” in Proceedings of the Workshop on Methods for
Optimizing and Evaluating Neural Language Generation. Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
55–64. [Online]. Available: https://aclanthology.org/W19-2307

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] Tatoeba: Collection of sentences and translations. Tatoeba.org. [Online]
Available: https://tatoeba.org/en/

[15] C. Kelly and L. Kelly, “Interesting Things for ESL/EFL Students (Fun
English Study),” 2023. Manythings.org. [Online]. Available:
https://manythings.org.

[16] F. Chollet et al. (2015) Keras. [Online]. Available:
https://github.com/fchollet/keras

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017. [Online] Available:
https://arxiv.org/abs/1412.6980

[18] S. Ranathunga, E.-S. A. Lee, M. P. Skenduli, R. Shekhar, M. Alam, and
R. Kaur, “Neural machine translation for low-resource languages: A
survey,” 2021. [Online] Available: https://arxiv.org/abs/2106.15115

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics.
Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, Jul. 2002, pp. 311–318. [Online]. Available:
https://aclanthology.org/P02-1040

[20] Z. Fu, W. Lam, A. M.-C. So, and B. Shi, “A theoretical analysis of the
repetition problem in text generation,” 2021. [Online] Available:
https://arxiv.org/abs/2012.14660

https://aclanthology.org/W19-2307
https://tatoeba.org/en/

