
 
 

  

Abstract—A key challenge in single-cell multiomics study is to 
quantify the relationship between mRNA level and protein 
abundance. This relationship is complicated by the dynamic 
nature of mRNA and protein. In this paper, a deep learning 
regression model was proposed to predict protein abundance 
from mRNA expression data. However, overfitting was 
identified as a major source of error. Because different 
modalities of the same sample should concord to the same cell 
population structure, we invented a manifold-preserving 
regularization term to reduce overfitting induced by noise 
specific to training. By applying our model on CITE-seq data for 
25 cell-surface proteins representing well-characterized 
markers, we observed an improvement of up to 30% on testing 
error. Thus, manifold-preserving regularization helps distill 
true mRNA-protein relationships from noisy data. We expect it 
to be generally applicable to other multiomics applications. 
 

I. INTRODUCTION 

Single-cell multiomics technologies provide co-assayed 
measurements from the same cells and can help learn 
relationships among different omics. Protein and RNA are 
important in understanding how cells work, and studying their 
relationship provides further insight into disease progression. 
A key challenge in single-cell multiomics study is to quantify 
the relationship between mRNA level and protein abundance 
[1,2], which is complicated by the dynamics in synthesis, 
splicing and degradation of mRNAs, and modification, folding 
and transportation of proteins. Furthermore, co-assayed data 
are limited, as they are usually more costly and compromise 
throughput and read depth. Hence, it is desirable to find a 
computational method that quantifies the relationship between 
proteins and RNA and predicts the protein profile with certain 
accuracy. 

Overparameterized deep learning models are ideal for 
modeling complicated relationships, including that of mRNAs 
and proteins. However, overfitting occurs when a model fits to 
not only the true relationship of the predictors and responses, 
but also training data-specific noise (such as technical noise 
from sample preparation and sequencing). To reduce the 
sensitivity to noise, regularization is a common way to shrink 
the solution space using heuristics. 

For single-cell data, manifold is an important characteristic 
that represents the cell population structure in a biospecimen. 
The manifold of a single-cell dataset is defined by the pairwise 
similarities of cells that characterize clusters, subtypes, and 
trajectories. It has been widely used in dimension reduction 
and trajectory inference [3,4,5]. Because different modalities 
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of the same sample largely agree, we hypothesize that the 
majority of discrepancies between the manifolds of mRNA 
and protein data are technical noise. To mitigate overfitting, 
we introduce Manifold-Preserving Regularization (MPR), 
which suppresses the noise to mitigate overfitting (Fig. 1).  

In this paper, a deep learning regression model was built to 
map the relationship between protein and gene expression 
levels. For a specific protein, although its coding gene can be 
a predictor, other genes also play important roles in the 
complicated regulations of its production and degradation. 
Thus, we use all genes as predictors. Results show that MPR 
increases the accuracy of models, compared to unregularized 
L2-regularized models. The genes with high weights in the 
resulting model are indeed in related biological pathways. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Architecture of Deep Neural Network with MPR 

II. METHODS 
We used a CITE-seq dataset with co-assayed bone marrow 

mononuclear cells from two healthy donors [6]. We used 
14,468 cells from Donor 1 as the training data, and, to test if 
the model can generalize, 16,204 cells from Donor 2 as the 
testing data. Measured in the datasets are 25 proteins and 
17,009 genes. Twenty-seven cell types were identified by the 
original publication.  

First, we preprocessed the data, including data cleaning and 
normalization. For the protein data, we normalized, log-
transformed, and scaled the data. For the RNA data, we first 
normalized and performed log transform using the same 
process as with the protein data. Based on our analysis of the 
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Figure 1: Architecture of Deep Neural Network with MPR



 
 
data, we decided the most effective data cleaning method was 
removing genes with constant or similar values across cell 
samples. As a common practice in single-cell data analysis, 
we used a cutoff of dispersion at 0.5 and mean at 0.5, 1,555 
highly variable genes are selected for Donor 1 (and later also 
used on Donor 2). Finally, we also scaled the RNA data.  

Then the goal of our regression analysis is to identify a 
function of the RNA expression data X so that the function 
value is close to the protein abundance value Y, let the 
function be ƒ(X,β) where β is the function parameters, we 
need to optimize the function form and the parameters so that 
the prediction Ŷ=ƒ(X,β) is as close to Y as possible.  

We selected a 5-layer neural network with 1500 nodes per 
hidden layer and a batch size of 64 after experimenting with 
the number of layers, number of nodes in the first layer, and 
the batch size. Each protein has its own neural network. 
Mean squared error (MSE) is used as the loss function. We 
also measured the Overfitting Factor of each model defined 
as 1 −	$Training	MSE	|	Testing	MSE.  

Based on our hypothesis that matching the manifold of 
RNA and protein will mitigate overfitting, we used manifold 
information as a regularization in fitting the model (Fig.1). 
The manifolds for X and Y are denoted P and Q, defined as 
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where ρ3 = m ∈ 89x3 − x498 , τ3 = m ∈ 89yGH − yIH98, and σQ is 
selected to ensure  
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The regularization term is defined as the Kullback-Liebler 
(KL) divergence of P and Q [7], also called relative entropy, 
measuring the difference between two distributions. 

III. RESULTS AND DISCUSSION 
First, we experimented with deep learning architectures as 

shown in Tab. 1. Drop-out layers are added to reduce 
overfitting. Generally, the results are not sensitive to the 
network architectures. Architectures trained with larger batch 
sizes tend to have smaller Overfitting Factors. The model with 
the lowest MSE was model #6: 1500 nodes in the first layer 
and trained with batch size 64, which is used throughout the 
rest of this paper. 

 

 

 

 

 

TABLE I.  MSE COMPARISON AMONG DIFFERENT ARCHITECTURES 

We trained and tested deep learning models without any 
regularization on each of the 25 proteins individually. The 
Overfitting Factor is nearly 1 for all proteins, suggesting that 
a near-perfect fit was achieved on training data, but does not 
generalize to testing data. Overfitting is indeed a major 
problem which necessitates regularization.  

We then experimented with L2-regularization and MPR. 
Both improved the Overfitting Factor significantly. MPR 
reduced the Overfitting Factor by 25% on average and up to 
50% for certain proteins, and outperformed L2 for every 
protein (Fig 2).  
 

 
 
 
 
 
 
 
 
 
 

Figure 2.  Overfitting Factor Comparison among No Regularization, L2, 
MPR 

For MSE, MPR consistently reduced the model’s testing 
MSE by 15% on average and up to 30% for certain proteins 
(Fig. 3). MPR performed preferably for 16 of the 25 proteins 
compared to L2-regularization, especially for proteins harder 
to predict from gene expression data, including CD123, CD25, 
CD38, CD4, CD56, CD79B, and CD8A. When compared 
with state-of-the-art model cTP-net[2], MRP outperformed 
cTP-net by up to 15%. 

 
 
 
 
 
 
 
 
 
 

Model # Nodes Batch Size MSE Overfitting Factor 

1 500 16 0.372 0.415 

2 500 64 0.356 0.279 

3 1000 16 0.362 0.472 

4 1000 64 0.358 0.314 

5 1500 16 0.365 0.505 

6 1500 64 0.356 0.344 

 
Figure 2: Overfitting Factor comparison among no regularization, L2, MPR



 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  MSE Comparison among No Regularization, L2, MPR 

Lastly, we performed gene set enrichment analysis on the 
top ten predictors for each protein. For one example, MPR 
identified CD19, a B-cell marker to be significantly related to 
B cell activation. 

IV. CONCLUSION 
In this study, a deep learning model was built to accurately 

predict protein abundance from RNA expression levels and 
quality the relationship between mRNA and protein. MPR 
was able to effectively mitigate overfitting in models 
characterizing relationships of modalities in multiomic data. 
It validates our hypothesis that the majority of discrepancies 
between the manifolds are noise and do not generalize across 
samples. MPR helps to obtain a more robust gene list that is 
closely related to biological processes. We expect it to be 
useful in other scenarios including predicting mRNA levels 
from assay for ATAC-seq chromatin accessibility profiles. 
Utility may also expand to non-single-cell data, such as bulk 
RNA sequencing and phenotypical characterization in The 
Cancer Genome Atlas (TCGA). 
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Figure 3: MSE comparison among no regularization, L2, MPR


