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Dear Readers, 
 

I am proud to announce the publication of the 2021-2022 edition of the Columbia Junior Science 
Journal! This year's edition features research in a wide variety of scientific disciplines, including 
biology, medicine, environmental science, astrophysics, engineering, and chemistry. The quality 
of research and the scholarship of our authors is impressive - including their work in our 
publication is an honor. 
 
The last year has been quite a roller coaster. The COVID-19 pandemic forced many to work 
remotely, reducing scientific research opportunities for students around the world. This happened 
at a time when scientific literacy and research was needed the most. So, it is inspiring to know 
that so many young scientists across the world are advocating for science through their research 
and authorship as we continue to rise above the pandemic. In fact, we had a record-high number 
of submissions to the Columbia Junior Science Journal this year! 
 
Science is a collective endeavor. So, in addition to advocating for scientific research, it is 
important to increase the accessibility of scientific resources to all communities. Giving high 
school students a platform to contribute to our scientific understanding of nature is only one way 
we seek to fulfill that aim. Our science events, conferences, and outreach efforts are a few 
additional ways we try to increase accessibility of scientific involvement to all. I am proud of our 
editorial team for leading the Columbia Undergraduate Science Journal in this cause. 
 
As the President of the Columbia Undergraduate Science Journal, it was an honor to read, edit, 
and review submissions made to our journal. I am grateful to our Columbia Junior Science 
Journal team and editorial board for their significant contributions to our scientific review 
process. I am especially grateful to Mayeesa Rahman, Editor-in-Chief of the Columbia Junior 
Science Journal, whose leadership made this publication a success. I would also like to thank the 
Columbia Undergraduate Science Journal Faculty Advisory Board, a group of esteemed 
Columbia University professors whose support ensures publication of the highest quality of 
scholarship. 
 
Congratulations to our authors, and thank you to our readers! 
 
Arjun Kudinoor 
President, Chief Editorial Officer 
Columbia Undergraduate Science Journal 
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Dear Readers, 
 

I am very excited to announce the publication of the seventh edition of the Columbia Junior 
Science Journal! As editors of this journal, our goal has always been to highlight outstanding 
research completed by high school students, and this issue features a collection of impressive and 
novel work in a wide range of scientific disciplines. 

 
I would like to take this opportunity to thank everyone who was involved in the creating this 
edition: the Columbia Junior Science Journal editorial board, the student authors featured, their 
research mentors, their parents and peers, and anyone else who contributed. To the authors – we 
value your unwavering commitment to scientific discovery and excellence in these challenging 
times and appreciate your hard work both while completing your research and working with us 
during the editing process. 

 
During this tumultuous and confusing year as we continue to navigate the COVID-19 pandemic, 
we recognize how difficult it has been to obtain the resources and laboratory access necessary for 
hands-on research. Due to these unfortunate circumstances and our dedication to making 
scientific publication as accessible as possible, we have decided to accept both original research 
articles and review papers for the second year in a row. We are proud to present both types of 
research in this issue. We received a record number of over 350 submissions this year, and we 
are delighted that the expansion of our journal has granted more students the opportunity to 
submit their research. 

 
This year’s edition of the Columbia Junior Science Journal explores a broad spectrum of 
scientific innovation ranging from modeling the kinematics of a galaxy to developing a novel 
program for the detection of lung carcinoma. We hope that you read this set of articles as one 
cohesive publication and can be inspired, as we at CJSJ are, by the endless potential of the next 
generation’s incredible scientific thinkers. 

 
It has been a great pleasure serving as the 2021-2022 Editor-in-Chief of CJSJ and watching our 
editorial board, as well as the high school students, grow throughout this entire publication 
process. I look forward to seeing and reading about all of your continued scientific endeavors for 
many years to come! 

 
Sincerely, 

 
Mayeesa Rahman 
Editor-in-Chief 
Columbia Junior Science Journal 

  



3 

 

 

 

Evaluation of Plastic Materials for Football Helmet Facemasks 
Using Finite Element Simulation 

Kunwoo Kim 
 
 
 
 

Abstract— American football reports the highest rate of head 
injuries including concussion in the United States. Although the 
use of football helmets has protected players and reduced severe 
head injuries, the number of concussion incidents has not 
decreased. A facemask mounted on the front opening of the 
helmet to protect the face is the second most impacted location 
of concussions. However, its high-rigidity material such as 
carbon steel or titanium makes the facemask disadvantageous in 
absorbing impact. This study aimed to assess the feasibility of 
using a plastic facemask to absorb impact in order to prevent 
concussion. Four different plastics, Polycarbonate (PC), 
Polyetherimide (PEI), Polymethyl Methacrylate (PMMA), and 
Acrylonitrile Butadiene Styrene (ABS), were selected to make 
the facemask, and a pneumatic ram impact test was conducted 
using numerical simulation. A PEI facemask was deformed but 
withstood the ram impact while preventing the ram from hitting 
the face. On the other hand, ABS and PMMA facemasks were 
cracked and failed, and a PC facemask was not cracked but 
allowed the ram to hit the face. This study indicated that if the 
plastic material was optimized, a PEI facemask would be feasible 
for absorbing the severe external impact, and protect players 
from concussions. 

I. INTRODUCTION 

American football is the most popular sport in the United 
States, but it has the highest head injury rate among all sports. 
Despite the National Football League(NFL)’s tremendous 
effort, the number of concussion incidents has not decreased 
since 2015 [1]. Football players wear helmets that consist of 
an outer shell, paddings, clips, a chinstrap, and a facemask 
(Figure 1). The structure and material of the outer shell and 
padding have been studied to improve impact-absorbing 
performance for a long time: plastic has been applied to the 
outer shell. The facemask which is for face protection, 
however, is the second most impacted location of concussion 
following the side of the helmet according to NFL [2]. little 
research has been done on facemasks for preventing head 
injuries. Modern facemasks are made of metal such as carbon 
steel or titanium. Although a metal facemask is stiff and 
effective to protect the face from direct contact damage, it can 
transfer the impact force directly to the head and increase the 
risk of concussion. The purpose of this study was to evaluate 
the feasibility of applying a plastic material to the facemask 
for absorbing impact and preventing concussion by 
investigating various plastic materials with finite element 
simulation. 

 

. 

II. METHOD 

The NFL requires the test condition of the National 
Operation Committee on Standards for Athletic Equipment 
(NOCSAE) for the helmet. One of the test conditions is the 
pneumatic ram impact test [3,10]. The ram consists of a front 
plastic cap, foam, and steel rod, and weighs 15.6 kg (Figure 1). 
Finite element simulation, a method commonly used for 
impact simulation, was conducted based on this test condition. 
The ram was set to impact to the front of the facemask at a 
speed of 7.4 m/s, the threshold impact speed for a concussion 
in NFL [4]. 

The NFL provides open-source simulation data of head- 
neck and football helmet models [5]. The 3-dimensional 
facemask and ram impactor model were recreated in detail 
(Figure 1) from the open-source model, in which the facemask 
was realized as a simplified one-dimensional model. The 
updated facemask had a circular section of 8 mm diameter. 
Since actual facemasks are attached to the helmet using clips, 
clip areas of the facemask were fixed as the boundary 
condition in the simulation (Figure 1). 

Four plastic materials, Polycarbonate (PC), Polyetherimide 
(PEI), Polymethyl methacrylate (PMMA), and Acrylonitrile 
butadiene styrene (ABS), were selected for the simulation. PC 
and ABS are currently used for the helmet outer shell due to 
their excellent ductility. PC has the best ductility with 110 % 
elongation at break. PEI is famous for ultra-performance 
engineering plastic and exhibits the highest strength (110 
MPa) with the second-best elongation of 50 %. PMMA, also 
known as Acrylic, is a common plastic material has the best 
stiffness equivalent to PEI, and the second-highest strength (67 
Mpa). The stress-strain curves of each material were acquired 
from CAMPUS Plastics (Figure 2) [6,7,8,9]. These stress- 
strain curves were entered into the simulation to realize 
nonlinear material behavior. 

 
 
 

Figure 1. (a) Football helmet composition (b) Ram impact test condition 
and simulation model (Facemask and ram) 



4 

 

 

 
 

 
 

 

Figure 2. Stress-stain curve (Right curve: Strain from 0 to 8%) - 
Represent the material behavior against external force 

Impact simulation was conducted with an impact event 
time of up to 0.025 seconds when the ram almost stopped. The 
contact condition between the facemask and the impactor was 
defined with zero friction. In the finite element simulation 
setting, a second-order element option was used for higher 
accuracy, and elements that reached the maximum tensile 
strain of the material during the event and were not able to 
resist against force set to be deactivated to realize crack 
propagation. 

 
III. RESULTS AND DISCUSSION 

It was required that the facemask was not broken by the 
ram impact and it prevented the ram from hitting the face 
during the event of the impact. So, the facemasks were 
examined for cracks until the ram slowed down sufficiently, 
and the ram velocity and displacement over time were 
measured from the simulation (Figure 4). 

Figure 3 shows the deformation of the PEI facemask for up 
to 0.025 seconds when the ram was almost stopped (Figure 
3,4). The facemask did not break and prevented the ram from 
touching the face. On the other hand, ABS and PMMA 
facemasks cracked at 0.014 and 0.002 seconds and failed to 
protect the face (Figure 5). The ABS facemask could not fully 
absorb impact energy even with a good ductility of 26 % 
elongation due to the lowest material strength. The PMMA 
facemask showed the worst result due to its brittleness of 3.4 
% elongation despite its excellent stiffness. The PC facemask 
was not cracked like PEI facemask, but was deformed by more 
than 65 mm, allowing the ram to hit the face slightly due to its 
lower stiffness than PEI (Figure 4.5). These results in failure 
mode or deformation indicate that the performance of the 
facemask to absorb impact and protect the face was highly 
dependent on the material properties. 

 

 
Figure 3. Deformation of PEI facemask over time 

Figure 4.   (a) Ram velocity (b) Distance between ram and face 
 
 

 
Figure 5. (a) max deformation of PC facemask (b) failure of ABS 

facemask (c) max deformation of PEI facemask (d) failure of PMMA 
facemask 

 
IV. CONCLUSION 

The facemask on a football helmet is the second most 
impacted position causing concussions in professional 
football, but the current facemasks have a metal frame 
structure that is too stiff to absorb the impact and gives direct 
impact to the head. Therefore, extensive simulations were 
conducted to evaluate plastic materials for the facemask to 
mitigate the risk of concussion. Plastic is flexible and absorbs 
impact better than metal, so four different plastic materials, 
PC, ABS, PEI, and PMMA, were validated using simulation 
based on the ram impact test condition of 7.4 m/s ram impact 
velocity, the concussion threshold speed. ABS and PMMA 
facemasks cracked and failed, while a PC facemask didn't fail 
but was too deformed to protect the face. A PEI facemask was 
deformed as it absorbed the impact, but it succeeded in 
protecting the face. This study suggested that a PEI facemask 
endured a harsh ram impact condition while absorbing the 
impact more than a metal facemask, and this indicates that a 
plastic facemask is feasible for an actual helmet to mitigate the 
concussion risk if the plastic material and frame structure 
design are further optimized for different ram attack angles and 
speeds 
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A Deep Learning Model for Protein Abundance Prediction from 
RNA Data with Manifold-Preserving Regularization 

Alice Feng, Shaoheng Liang, Ken Chen Ph.D. 
 
 

Abstract—A key challenge in single-cell multiomics study is to 
quantify the relationship between mRNA level and protein 
abundance. This relationship is complicated by the dynamic 
nature of mRNA and protein. In this paper, a deep learning 
regression model was proposed to predict protein abundance 
from mRNA expression data. However, overfitting was 
identified as a major source of error. Because different 
modalities of the same sample should concord to the same cell 
population structure, we invented a manifold-preserving 
regularization term to reduce overfitting induced by noise 
specific to training. By applying our model on CITE-seq data for 
25 cell-surface proteins representing well-characterized 
markers, we observed an improvement of up to 30% on testing 
error. Thus, manifold-preserving regularization helps distill 
true mRNA-protein relationships from noisy data. We expect it 
to be generally applicable to other multiomics applications. 

 
I. INTRODUCTION 

Single-cell multiomics technologies provide co-assayed 
measurements from the same cells and can help learn 
relationships among different omics. Protein and RNA are 
important in understanding how cells work, and studying their 
relationship provides further insight into disease progression. 
A key challenge in single-cell multiomics study is to quantify 
the relationship between mRNA level and protein abundance 
[1,2], which is complicated by the dynamics in synthesis, 
splicing and degradation of mRNAs, and modification, folding 
and transportation of proteins. Furthermore, co-assayed data 
are limited, as they are usually more costly and compromise 
throughput and read depth. Hence, it is desirable to find a 
computational method that quantifies the relationship between 
proteins and RNA and predicts the protein profile with certain 
accuracy. 

Overparameterized deep learning models are ideal for 
modeling complicated relationships, including that of mRNAs 
and proteins. However, overfitting occurs when a model fits to 
not only the true relationship of the predictors and responses, 
but also training data-specific noise (such as technical noise 
from sample preparation and sequencing). To reduce the 
sensitivity to noise, regularization is a common way to shrink 
the solution space using heuristics. 

For single-cell data, manifold is an important characteristic 
that represents the cell population structure in a biospecimen. 
The manifold of a single-cell dataset is defined by the pairwise 
similarities of cells that characterize clusters, subtypes, and 
trajectories. It has been widely used in dimension reduction 
and trajectory inference [3,4,5]. Because different modalities 

 
* Alice is with the Harker School, San Jose, CA. Shaoheng Liang and Dr. 
Ken Chen are with Depart of Bioinformatics and Computational Biology at 
the University of Texas MD Anderson Cancer Center, Houston. TX. 

 
of the same sample largely agree, we hypothesize that the 
majority of discrepancies between the manifolds of mRNA 
and protein data are technical noise. To mitigate overfitting, 
we introduce Manifold-Preserving Regularization (MPR), 
which suppresses the noise to mitigate overfitting (Fig. 1). 

In this paper, a deep learning regression model was built to 
map the relationship between protein and gene expression 
levels. For a specific protein, although its coding gene can be 
a predictor, other genes also play important roles in the 
complicated regulations of its production and degradation. 
Thus, we use all genes as predictors. Results show that MPR 
increases the accuracy of models, compared to unregularized 
L2-regularized models. The genes with high weights in the 
resulting model are indeed in related biological pathways. 

 
 

Figure 1. Architecture of Deep Neural Network with MPR 
 
 

II. METHODS 

We used a CITE-seq dataset with co-assayed bone marrow 
mononuclear cells from two healthy donors [6]. We used 
14,468 cells from Donor 1 as the training data, and, to test if 
the model can generalize, 16,204 cells from Donor 2 as the 
testing data. Measured in the datasets are 25 proteins and 
17,009 genes. Twenty-seven cell types were identified by the 
original publication. 

First, we preprocessed the data, including data cleaning and 
normalization. For the protein data, we normalized, log- 
transformed, and scaled the data. For the RNA data, we first 
normalized and performed log transform using the same 
process as with the protein data. Based on our analysis of the 



 
 
data, we decided the most effective data cleaning method was 
removing genes with constant or similar values across cell 
samples. As a common practice in single-cell data analysis, 
we used a cutoff of dispersion at 0.5 and mean at 0.5, 1,555 
highly variable genes are selected for Donor 1 (and later also 
used on Donor 2). Finally, we also scaled the RNA data.  

Then the goal of our regression analysis is to identify a 
function of the RNA expression data X so that the function 
value is close to the protein abundance value Y, let the 
function be ƒ(X,β) where β is the function parameters, we 
need to optimize the function form and the parameters so that 
the prediction Ŷ=ƒ(X,β) is as close to Y as possible.  

We selected a 5-layer neural network with 1500 nodes per 
hidden layer and a batch size of 64 after experimenting with 
the number of layers, number of nodes in the first layer, and 
the batch size. Each protein has its own neural network. 
Mean squared error (MSE) is used as the loss function. We 
also measured the Overfitting Factor of each model defined 
as 1 −	$Training	MSE	|	Testing	MSE.  

Based on our hypothesis that matching the manifold of 
RNA and protein will mitigate overfitting, we used manifold 
information as a regularization in fitting the model (Fig.1). 
The manifolds for X and Y are denoted P and Q, defined as 
 

p34 =
exp 7−789x3 − x498 − ρ3; /σ3;

∑ exp?−?9|x@ − xA|9 − ρ3B/σ3B@CA
 

and 

q34 =
71 + 789yGH − yIH98 − τ3; /σ3;

KL

∑ ?1 + ?9|y@M − yAH|9 − τ3B/σ3B
KL

@CA

	

where ρ3 = m ∈ 89x3 − x498 , τ3 = m ∈ 89yGH − yIH98, and σQ is 
selected to ensure  

Rexp7−789x3 − x498 − ρ3; /σ3;
4

= k 

The regularization term is defined as the Kullback-Liebler 
(KL) divergence of P and Q [7], also called relative entropy, 
measuring the difference between two distributions. 

III. RESULTS AND DISCUSSION 
First, we experimented with deep learning architectures as 

shown in Tab. 1. Drop-out layers are added to reduce 
overfitting. Generally, the results are not sensitive to the 
network architectures. Architectures trained with larger batch 
sizes tend to have smaller Overfitting Factors. The model with 
the lowest MSE was model #6: 1500 nodes in the first layer 
and trained with batch size 64, which is used throughout the 
rest of this paper. 

 

 

 

 

 

TABLE I.  MSE COMPARISON AMONG DIFFERENT ARCHITECTURES 

We trained and tested deep learning models without any 
regularization on each of the 25 proteins individually. The 
Overfitting Factor is nearly 1 for all proteins, suggesting that 
a near-perfect fit was achieved on training data, but does not 
generalize to testing data. Overfitting is indeed a major 
problem which necessitates regularization.  

We then experimented with L2-regularization and MPR. 
Both improved the Overfitting Factor significantly. MPR 
reduced the Overfitting Factor by 25% on average and up to 
50% for certain proteins, and outperformed L2 for every 
protein (Fig 2).  
 

 
 
 
 
 
 
 
 
 
 

Figure 2.  Overfitting Factor Comparison among No Regularization, L2, 
MPR 

For MSE, MPR consistently reduced the model’s testing 
MSE by 15% on average and up to 30% for certain proteins 
(Fig. 3). MPR performed preferably for 16 of the 25 proteins 
compared to L2-regularization, especially for proteins harder 
to predict from gene expression data, including CD123, CD25, 
CD38, CD4, CD56, CD79B, and CD8A. When compared 
with state-of-the-art model cTP-net[2], MRP outperformed 
cTP-net by up to 15%. 

 
 
 
 
 
 
 
 
 
 

Model # Nodes Batch Size MSE Overfitting Factor 

1 500 16 0.372 0.415 

2 500 64 0.356 0.279 

3 1000 16 0.362 0.472 

4 1000 64 0.358 0.314 

5 1500 16 0.365 0.505 

6 1500 64 0.356 0.344 

 
Figure 2: Overfitting Factor comparison among no regularization, L2, MPR
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Figure 3. MSE Comparison among No Regularization, L2, MPR 
 

Lastly, we performed gene set enrichment analysis on the 
top ten predictors for each protein. For one example, MPR 
identified CD19, a B-cell marker to be significantly related to 
B cell activation. 

 
IV. CONCLUSION 

In this study, a deep learning model was built to accurately 
predict protein abundance from RNA expression levels and 
quality the relationship between mRNA and protein. MPR 
was able to effectively mitigate overfitting in models 
characterizing relationships of modalities in multiomic data. 
It validates our hypothesis that the majority of discrepancies 
between the manifolds are noise and do not generalize across 
samples. MPR helps to obtain a more robust gene list that is 
closely related to biological processes. We expect it to be 
useful in other scenarios including predicting mRNA levels 
from assay for ATAC-seq chromatin accessibility profiles. 
Utility may also expand to non-single-cell data, such as bulk 
RNA sequencing and phenotypical characterization in The 
Cancer Genome Atlas (TCGA). 
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Evaluation of Gender Effects in Predicting Parkinson’s Disease from 
Voice: A Random Forest Approach 

Shreya Sreekantham 
 
 
 

Abstract— Parkinson’s Disease (PD) is the second most 
prevalent neurodegenerative disease in the world, affecting more 
than 10 million people. It has no cure, but early diagnosis of PD 
can help slow down the progression and improve the patient’s 
life quality. However, the diagnosis of PD is often subjective and 
inaccurate because its presentation varies widely between 
individuals. This study focuses on early PD diagnosis and 
evaluates biomedical voice parameters variation by gender using 
a novel Random Forest Algorithm (RFA). The study utilized a 
multivariate PD dataset extracted from the UCI Machine 
Learning data repository that consisted of 5,875 voice recordings 
from 42 subjects. The novel RFA introduced in this study both 
improves the accuracy for PD detection and consistently 
performs well across gender. In addition, the study identifies 
gender-based differences in the expression profiles of voice 
parameters that can be useful in future clinical applications. 

 

I. INTRODUCTION 

Parkinson’s Disease (PD) is a condition characterized by a 
degeneration of dopaminergic neurons in the substantia nigra, 
impacting motor control, sensory systems, and cognition. [1] 
Some specific motor symptoms include dysarthria (weakness 
and coordination issues), akinesia (impairment of voluntary 
movement), tremors, and vocal changes. PD has no cure, so 
early diagnosis is critical to monitor, minimize, and control 
disease progression. However, as symptoms and progression 
vary widely, PD often goes undiagnosed for many years. In 
addition, factors like gender differences, aging, and immune 
status tend to complicate PD diagnosis. TAs no diagnostic lab 
tests for PD exist, traditional diagnosis for PD relies on costly 
subjective scans and in-clinic evaluations of motor symptoms 
and are not very effective to date. [2] Therefore, there is an 
urgent medical need to develop more sensitive tools for PD 
diagnosis. 

Given this subjectivity in diagnosing PD, machine learning 
approaches that target specific symptoms below the range of 
human observation have gained popularity. [3] Since vocal 
impairments are one of the earliest symptoms of the disease, 
this study focuses on detecting PD from voice. Additionally, 
despite different presentations in symptoms, there are 
relatively few studies investigating how gender differences 
affect the accuracy of PD diagnosis. One significant gender- 
based difference in Parkinson’s disease is that although 
women demonstrate higher mortality and faster progression 
rates,4 PD is twice as prevalent in men than women. [4].5 This 
study seeks to understand how gender differences in 
symptoms affect the voice-based diagnosis of PD and 

 
proposes a novel Random-Forest Algorithm (RFA) that 
consistently performs well in detecting PD across gender. 
Below are the accuracies of PD diagnosis achieved by the 
algorithm: 

• 99.2% for females without gender-impacted parameters 

• 96.6% for males without gender-impacted parameters 

• 99.3% for females with gender-impacted parameters 

• 97.15% for males with gender-impacted parameters. 

In comparison, previous machine learning approaches for 
voice-based PD diagnosis when accounting for differences 
across gender achieved a highest accuracy of 82.14%. . This 
novel RFA improves PD diagnostic accuracy and performs 
well across genders. This study is an important step towards 
creating robust diagnostic models that account for 
demographic variation. 

 
II. METHODS 

Dataset Description 
The dataset utilized in this study was generated by 

Athanasios Tsanas and Max Little of the University of 
Oxford12. This dataset has 16 biomedical early-stage PD 
voice parameters from 42 subjects. [4] The data has a total of 
5,875 voice recordings during a six-month trial of a 
telemonitoring device. About 200 recordings were collected 
from each patient. The data was categorized as follows for 
each subject: Sex (Male: 0 and Female:1), Jitter (Five 
measures of variation in fundamental frequency), Shimmer 
(Six measures of variation in amplitude), NHR (Two measures 
of noise to tonal components ratio), RPDE (nonlinear 
dynamical complexity measure), DFA (Signal fractal scaling 
exponent), and PPE (a nonlinear measure of fundamental 
frequency variation). 

Random Forest Algorithm 
The goal of the machine learning algorithm is to predict 

Unified PD Rating Scale (UPDRS) scores, a scale of PD 
progression, from the parameters extracted from the voice 
recordings. IniConductingtial initial exploratory analysis 
revealed no clear linear, logistic, or planar relationships 
between variables. To bypass these limitations, this study 
bypass these limitations, explores a random-forest algorithm 
(RFA) was utilized. With multiple decision trees rather than 
just one, Random Forests enables the exploration of the 
dependencies between variables in the multivariate dataset. 
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The data was sorted by gender for further analysis. This 

distribution was then utilized to identify gender-specific 
patterns of one or a combination of parameters using simpler 
statistical analysis. Following this Random Forest algorithm 
(Fig 1) was utilized to further evaluate the prediction 
parameters. 

 

Fig 1. Depiction of Random Forest Cluster 

The process for generating the RFA primarily involved the 
following steps: selecting random data points from the training 
set, building the decision trees with the selected data points, 
choosing the number of decision trees, repeating the steps, and 
finding predictions of each decision tree. Differences based on 
gender were identified in the data set, and the RFA was applied 
to the data to compare accuracies in predicting UPDRS scores. 

The ensemble form of RFAs is expressed as Forest F = f1, 
f2, ..., fn. Each F yields a distribution that was averaged prior 
to applying the algorithm. The predictors were then combined 
by using the mean of the continuous target variables. The 
prediction performance of the proposed model was finally 
confirmed with a 5-fold cross-validation. 

 
III. RESULTS 

The predictors The dataset utilized in this research article 
has 5875 recordings, 1867 from females and 4008 from males. 
Exploratory analysis was conducted using the data from the 
training instances for all the inputs described in Table 1. 
Gender based data distributions were compared for both the 
target variables (motor UPDRS and Total UPDRS). The 
results showed that both target variables reflected a normal 
distribution profile (Fig 2). 

 
 

Fig 2. Gender-based frequency histogram profiles for motor UPDRS. 
Similar patterns were observed for Total UPDRS (not shown) 

The biomedical voice parameter measurements were next 
evaluated individually for distribution trends between male 

and female subjects. For simplistic analysis, the data was 
normalized to the male measurements. The analysis 
established two of the sixteen parameters (Jitter Abs and NHR) 
showed differences across genders (Fig 3). 

 

 
Fig 3. Comparison of individual biomedical parameters establishes possible 

differences in two of the sixteen parameters. (Data normalized to males) 
 
 

This data indicates there are gender-based differences in 
the individual parameters, however it is unclear if these 
differences affect the prediction of UPDRS scores. Therefore, 
in order to obtain unbiased results, the RFA was run on the test 
cohort, to calculate accuracy with and without the gender 
dependent features (Jitter (Abs) and NHR). These prediction 
accuracies were then validated with a 5-fold cross-validation. 
Table 1 below summarizes the accuracies of the RFA. 

 

 
The RFA averages a 98.0% with or without the gender- 

impacted parameters. Despite the gender-based differences in 
the individual parameters, this RFA maintains high accuracy 
across both of the genders in the dataset. 

 
IV. DISCUSSION 

This study introduced a novel RFA which enhanced the 
accuracy of PD diagnosis compared to existing methods. It 
also helps conclude that variation in symptoms by gender does 
not affect the accuracy of voice-based diagnosis of PD. 
Furthermore, the gender-specific data were evaluated on one 
generalized model, which reduced the complexity of both the 
analysis and the prediction. For future work, applying this 
model to additional datasets and investigating the effects of 
other demographic differences will be a useful step towards 
implementing widely applicable voice-based screenings for 
Parkinson’s. 
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Effects of Various Soil Microbiomes on Native and Invasive Plants 
Eric Wang 

 
 
 

Abstract— Many nature reserves use exclosures to preserve 
pockets of native plant biodiversity. These exclosures typically 
have a high proportion of native plants, as there are few invasive 
species to harm them, resulting in different plant-soil feedbacks 
(PSFs) within and outside of exclosures. PSFs alter the soil 
microbiome and have lasting effects on plant community 
composition; as such, they have important implications for 
natural ecosystem conservation. For this case study, three native 
and two invasive plant species were grown in soil inoculated with 
microbiomes collected from inside and outside of ten exclosures. 
Analyses of their biomass revealed that native species performed 
better in the soil microbiome from the exclosures, while invasive 
species’ growth was not significantly impacted by the different 
microbiomes. This research provides new insights into plants 
and the soil microbiome in the context of conservation and has 
important implications on the protection of natural ecosystems. 

 
I. INTRODUCTION 

The soil microbiome consists of billions of 
microorganisms living in a complex, underground ecosystem. 
In relation to their interactions with nearby plants, soil 
microorganisms can generally be categorized into three 
groups: enemies, which negatively affect plants; mutualists, 
which positively affect plants; and decomposers, whose main 
roles are in nutrient cycles [1]. Taken altogether, the balance 
of these three groups has significant effects on plant growth 
and development. Plants can take advantage of these effects by 
altering the soil microbial community composition to their 
benefit. For instance, in the “cry for help” phenomenon, plants 
release various organic chemicals through their roots to recruit 
certain microorganisms that help them resist environmental 
stressors, such as drought [2]. These changes are short-term, 
but plants can also have lasting effects on the soil microbiome. 
Known as plant-soil feedbacks (PSFs), these changes last long 
after the original plant is gone and have important influences 
on plant community assemblage [3]. 

Plants have species-specific feedback effects, which 
contribute to differing fitness levels among plant species. In 
the context of conservation, it is hypothesized that non-native 
plants may exploit PSFs to outcompete native plants and 
become invasive. Meisner et al. (2014) recently conducted a 
meta-analysis of native and non-native PSFs, which revealed 
that non-native species typically had fewer self-negative PSFs; 
this may be an important contributor to their invasiveness, 
which warrants further research into how these PSFs affect the 
spread of invasive species [5]. 

Invasive species management is key to preserving native 
biodiversity and healthy natural ecosystems [6]. To combat the 
spread of invasive plant species, many nature reserves use 

 
exclosures, fenced-in regions meant to protect native 
biodiversity from herbivores and the spread of invasive 
species. One study in Europe found that protected areas such 
as these had lower invasive richness inside compared to 
outside despite being a suitable habitat for them [7]. A recent 
survey of the exclosures at the South Mountain Reservation, 
located in Essex County, NJ, similarly found that exclosures 
typically had higher native plant coverage than outside the 
exclosures [8]. 

This case study analyzes how the soil microbiome inside 
and outside of the exclosures at the South Mountain 
Reservation differ in their effects on native and invasive plant 
species. It seeks to determine whether the PSFs resulting from 
the differing native plant cover inside and outside exclosures 
influence how the soil microbiome affects different plant 
species. 

 
II. METHODS 

Soil samples were collected from both inside and outside 
of ten randomly sampled exclosures in the southeast portion of 
the South Mountain Reservation. The soil microbiomes of 
each site were then transferred to a sterilized potting mix of 
potting soil (80% (v/v)) and topsoil (12.5% (v/v)) through 
direct inoculation at a rate of 7.5% (v/v), which transfers the 
soil microbiome while only minimally altering abiotic 
conditions. [9] A sterile control was included using a sterile 
inoculant. Pots were incubated overnight at ambient 
temperature (~27 ºC) prior to planting. 

The experiment consisted of 3 blocks and 21 treatments. 
Two of the blocks had individual plants grown in each pot, 
while the third block had larger pots with two individuals from 
each species per pot. Plants were kept in a grow tent under 600 
W metal-halide lamps providing approximately 220 µmol 
light quanta m-2s-1 at plant level with a photoperiod of 16:8 
hours (day:night). Ambient temperature was 30ºC day/22ºC 
night and relative humidity was 50-70%. 

Five plant species were chosen based on their family and 
their relative conservation priorities at the reservation[8]. 
Three species were native (Solidago flexicaulis (Asteraceae), 
Calamagrostis canadensis (Poaceae), and Geranium 
maculatum (Geraniaceae)) and two species were invasive 
(Artemisia vulgaris (Asteraceae) and Miscanthus sinensis 
(Poaceae)). Seeds were surface-sterilized with a solution of 
2.75% NaClO and 0.005% Tween20 for 1 minute, then 
germinated on a moist paper towel medium. Seedlings that 
died within the first two weeks were replaced, though seedling 
mortality was low (~1.2%). Plants were watered daily for the 
first 4 weeks, then every other day for the remainder of the 
experiment. Plants were allowed to grow for 7 weeks total. 
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Fresh biomass was then measured as total aboveground 
biomass; dry biomass was measured by drying the plants. 

All statistical analyses were performed using R version 
4.1.0 [10]. Biomass data from the smaller pots were analyzed 
with linear mixed effects models using the lme4 package with 
plant species, microbiome origin (inside/outside), and their 
interaction as fixed effects and a random effect of block. 
Separate models were also generated for each plant species. 
Data from the larger pots were analyzed using the total native 
and total invasive biomasses per pot. Statistical significance 
was tested using F-tests with the anova function in the package 
lmerTest. 

 
III. RESULTS AND DISCUSSION 

 

Fig. 1 Box plots of biomass separated by species, block, and position 
 
 

Species F p 

Overall (Species Position) F 4,  1 8 9     = 1.627 0.1627 

A. vulgaris F 1,  3 7     = 0.3985 0.5317 

C. canadensis F 1,  3 7     = 2.0298 0.1626 

G. maculatum F 1,  3 7     = 6.545 0.01475 

M. sinensisa
 F 1,  3 7     = 1.0684 0.3082 

S. flexicaulis F 1,  3 7     = 3.4441 0.07146 

Total Native Biomass F 1     = 5.42 0.03177 

Total Invasive Biomass F 1     = 0.2017 0.6587 

 
Table 1. Effects of microbiome origin on biomass 

In general, plant biomass did not differ significantly based 
on whether the soil microbiome originated from inside or 
outside of an exclosure. However, responses to changes in 
microbiome origin were species-specific: the effect was 
statistically significant for G. maculatum (F1, 37 = 6.5450, p = 
0.01475) and trended towards significance for S. flexicaulis 
(F1, 37 = 3.4441, p = 0.07146). Biomass when grown in soil 
microbiomes from within exclosures was approximately 8% 
higher than outside for G. maculatum and 5% higher for S. 
flexicaulis. Microbiome origin also had a statistically 
significant effect on total native biomass (F1 = 5.42, p = 
0.03177) but not on total invasive biomass (F1 = 0.2017, p = 
0.6587). 

Overall, these results are generally consistent with prior 
research. The differing microbiome origins did not have a 
significant effect on invasive species, while native species 
tended to be more positively affected when the soil 
microbiome originated from within an exclosure. This 
suggests that the detrimental PSFs caused by invasive species 
outside of exclosures outweigh the harm caused by self- 
negative PSFs of native species within the exclosures. In 
addition, it suggests that invasive species are not significantly 
affected by either the positive or negative PSFs that typically 
hinder native plants. The effects of microbiome origin also 
varied with plant life form, consistent with the previously 
mentioned meta-analysis by Meisner et al. (2014). 
Microbiome origin had a significant effect on native forbs (G. 
maculatum and S. flexicaulis) than the grasses (C. canadensis 
and M. sinensis), suggesting that native forbs may be more 
negatively impacted by invasive PSFs than grasses. 

 
IV. CONCLUSION 

This study addresses the previous literature gap on the 
effects of exclosures and PSFs on the soil microbiome. Future 
research could focus on analyzing other nature reserves and 
using a wider variety of species to better understand how the 
soil microbiomes of exclosures affect native and invasive plant 
species. In short, these findings can be used to guide 
conservationists in designing methods to prevent the 
destruction of native biodiversity and serve as a starting point 
for further research into the field. 
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X- Net: A Convolutional Neural Network for X-Ray Threat   
Detection 

                                                                             Ryan Park  
 
 

Abstract— This paper proposes X-Net, a novel deep learning 
architecture that enhances airport security through the 
detection of dangerous objects in X-ray luggage scans. Scanning 
of luggage is a critical part of aviation safety but is alarmingly 
unreliable due to human error. This endangers the safety of 
millions of airline passengers. To eliminate this human error, 
several deep learning concepts engineered for the analysis of X- 
ray baggage scans are introduced. The different concepts are all 
part of one model, called X-Net. X-Net employs a network of 
deep convolutional lateral stacks, which combine vertical 
residual transpose blocks with inter-layer connections. This 
combination allows for multi-directional gradient flow, resulting 
in richer and more robust internal feature representations. 
These innovations enable X-Net to perform exceptionally well on 
real-world baggage scans, significantly enhancing public safety 
and potentially saving thousands of lives: X-Net detects 
malicious items 400% more accurately and 4200% faster than a 
human TSA officer. Moreover, this proposed approach provides 
novel and empirically useful deep learning tools that strengthen 
other fields of computer vision. 

 
 

I. BACKGROUND 

Now more than ever, airport safety is a high-priority national 
security issue. Two decades ago, 9/11 exposed the 
catastrophic results of lackluster aviation security; today, 
modern terrorism has made the task of protecting airports all 
the more significant. However, this task is not an easy one, as 
the ever-increasing rate of air travel has put a strain on 
security organizations like the TSA. Within the TSA’s 
airport-related responsibilities, X-ray threat detection (“TD”) 
is one of the most important, as it is the primary means of 
analyzing passengers’ luggage. In this high-risk scenario, the 
TSA has been alarmingly ineffectual. Reports by Forbes, 
ABC News, Newsweek, and The New York Times indicate that 
the TSA has failed to catch 70-95% of dangerous items in 
multiple undercover government tests [2], [3], [5], [8]. This 
astronomical failure rate is no surprise. Ultimately, the failure 
of baggage screening tests is a result of human error. The 
logical solution is to remove the human component, i.e., 
employ automatic threat detection (“ATD”) to decrease the 
failure rate. This paper explores a deep learning model, named 
X-Net, as an accurate and efficient ATD system to address the 
issue of X-ray TD. 

introduces “lateral stacks” as the core of X-Net-backbone 
(inspired by Lin et. al (2017)’s research on feature-pyramid 
networks). The X-Net-backbone has a main horizontal 
branch along with several lateral stacks (mini neural 

 

networks that stem from the main convolutional branch). 
The outputs of these stacks are concatenated channel-wise 
and serve as the input to another network, called the 
secondary horizontal branch. The output of this branch is 
then added with the output of the main horizontal branch to 
form the final output of the X-Net-backbone. See Fig. 1 for a 
visualization of this architecture, which streamlines information 
flow and prevents gradient vanishing deep in the network. 

 
 

III. METHODOLOGY 

II. X-NET DESIGN 

X-Net combines the YOLO detection head from Redmon 
et al. (2018) with a novel backbone (“X-Net-backbone”). 
The detection head is a three-tier residual convolutional 
network, which detects objects at different input image 
resolutions [7]. The backbone is the feature extractor, which 
condenses the information in the input image such that the 
detection head can then detect objects. This research 

X-Net is trained and evaluated on SIXray [6]: an X-ray 
baggage scan dataset created by the Pattern Recognition and 
Intelligent System Development Laboratory of the University 
of Chinese Academy of Sciences. SIXray contains 1,059,231 
X-ray baggage scans with 12,245 malicious objects, including 
knives, scissors, guns, wrenches, and pliers. In total, X-Net is 
trained on ~9,000 X-ray scans with MS-COCO-pretrained 
weights initialization in early layers. Testing and validation 
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sets were held-out using ~500 scans each, with no overlap 
between train/validation/test splits. 

X-Net is programmed using Keras and TensorFlow. Open- 
source code [1] is used for evaluation and results. Code from 
this study is publicly available at 
https://github.com/orangese/x-net. 

Training utilizes a GeForce RTX 2060 for 72 hours. Due to 
hardware limitations, a resource-conscience training schema 
is employed. X-Net is trained in three different stages, using 
Adam with a batch size of 1 and learning rates = [0.001, 
0.0001, 0.00001]. This annealed training strategy initially 
encourages exploration of parameter space (learning rate = 
0.001) and then encourages convergence towards a minimum 
of the loss function (learning rate = 0.00001). 

IV. RESULTS AND DISCUSSION 

The main innovation of X-Net are the aforementioned “deep 
lateral stacks”: these are mini-networks that branch off of 
several points within the convolutional backbone of X-Net. 
Unlike in previous research, which used largely linear 
network structures like the Inception and ResNet families [6], 
X-Net incorporates information across several resolution 
“checkpoints” along the backbone. Thus, the detection of 
smaller malicious objects is emphasized compared to 
previous convolutional networks that lossily compress tensor 
dimensions deep into the network. 
Two evaluation metrics from [6] are used to evaluate X-Net: 
classification accuracy (measures detection of malicious 
items) and localization accuracy (measures the ability to 
identify the location of malicious items). In this section, 
accuracy is computed using mean average precision (“mAP”), 
a standard computer vision metric used to assess object 
detection algorithms. All reported percent results are relative 
percent increases, not absolute increases in mAP. 

With respect to classification accuracy, X-Net outperforms 
the next-best ATD model by 9.93% and plain YOLOv3 by 
11.03% (Table 1): 

 

 
More importantly, X-Net decreases human error by 

several orders of magnitude, achieving a 399.31% gain in 
classification mAP and a 4247.83% gain in speed over a 
TSA officer (Fig. 2): 

 

 
 

With respect to localization accuracy, X-Net improves 
overall mAP by 17.93% (Table 2): 

 

V. CONCLUSION 

Ultimately, X-Net advances both deep learning theory and 
its applications. First, it provides empirical justification for 
the proposed lateral stacks. Specifically, X-Net increases 
detection and localization of the smallest class (scissors) by 
34.77% and 40.71%, implying that lateral stacks are 
especially useful for detecting hard-to-see objects. Similar 
accuracy gains can be noted for the other objects in Tables 1 
and 2. However, the accuracy gains for larger objects (guns, 
knives, wrenches, etc) were smaller. This result is consistent 
with the intended design of X-Net: unlike previous networks, 
X-Net is able to access information at various stages within 
the network (i.e., both high-resolution and low-resolution) 
due to its deep lateral stack paradigm. As a result, it can detect 
smaller objects with relative ease. Increasing detection 
accuracy for the larger objects, however, is a potential 
extension of this research that will likely be addressed as 
convolutional network design continues to evolve. 

X- Net outperforms the TSA by 399.31% in terms of 
malicious item detection accuracy and is incredibly fast, 
achieving a 4247.83% reduction in time per scan. Therefore, 
X-Net is a critical enhancement of airport security and a 
practical solution to the problem of X-ray TD. If integrated 
into security systems, it would detect many threats and save 
many lives, thereby helping to preserve public safety 
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Genetic Association Testing and Predictive Modeling for Non- 
Small Cell Lung Carcinoma RNA Sequencing 

Lyon Kim 
 
 
 

Abstract— We developed Python code to analyze a bulk RNA 
sequencing dataset consisting of lung tissues from healthy and 
non-small cell lung carcinoma (NSCLC) patients. Our 
preliminary goal was to find genes that were positively or 
negatively associated with cancer. To do so, we tested the null 
hypothesis, which stated that the average gene expression 
between cancer and non-cancer patients is equal. We rejected 
the null hypothesis since 86.8% of the genes showed a difference 
in expression. After finding genes associated with cancer, we 
built a machine learning logistic regression model from the gene 
expression data. To efficiently measure the performance of our 
method’s ability to predict cancer, we randomly split the data 
into training (80% of data) and testing datasets (20%) and used 
five-fold cross validation. By adjusting the probability threshold 
for classifying cancer, we created an ROC curve, representing 
the trade-off between the fpr (false positive rate) and the tpr 
(true positive rate). Ultimately, we hope that these mechanisms 
can help increase the chance for an early diagnosis of NSCLC, 
which is crucial to controlling and even preventing it. 

 
I. INTRODUCTION 

 

 
 

 
 
 

Figure 1. Defining Notation 

II. METHOD 

Discovering Genes Associated with NSCLC 
We aimed to detect genes with a significant difference in 

gene expression between cancer and non-cancer patients. To 
do so, we tested the null hypothesis that the average gene 
expression in both types of patients is equal. The data we used 
was from a normalized, merged lung cancer transcriptome 
dataset that listed for each patient whether each gene was 
expressed or not through methods of differential expression 
analysis, batch effect correction, and filtering of genes with 
low variance. 

Testing each Gene’s Significance 
 

 
Figure 2. Method for Testing Gene Significance 

Creating a Logistic Regression Model for the Prediction 
of NSCLC 
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III. RESULTS 

 

Figure 3. Genes Associated with NSCLC 
 

These three graphs are boxplots of gene expressions in both 
cancer and non-cancer patients. 

• Left: This boxplot represents the gene, PPME1, 
with the largest decrease in average gene 
expression from cancer to non-cancer patients. 

• Middle: This second graph represents the gene, 
STX12, with the largest increase in average gene 
expression from cancer to non-cancer patients. 

• Right: This gene, ZNF818P, was found to have no 
change in average gene expression from cancer to 
non-cancer patients. This graph serves as a control 
gene. 

 
Therefore, the gene PPME1, which is highly prevalent in 
cancer patients, is associated with NSCLC, whereas the gene 
STX12 is negatively associated with NSCLC. Studying 
these genes may yield insight into the biological mechanism 
of NSCLC. In fact, inhibition of PPME1 has already been 
proven to prevent cell proliferation and induce apoptosis in 
certain cancer cells [2]. On the other hand, the gene STX12, 
which is a part of the SNARE complex, helps to control 
tumorigenesis by regulating cancer cell invasion [3]. 

 
 

Figure 4. Genes with the Largest and Smallest Z Values are most associated 
with NSCLC 

 
By finding the Z values, we were able to quantify the 

difference of the average gene expression between cancer 
and non-cancer patients. We used the Z values to find 
candidate genes that could be related to cancer. Next, we 
tested for each gene for significance, and we found 8747 
significant genes, including the twenty genes in the figure on 
the left. 

 

 
 

Figure 6. Training and Testing Accuracy 

We randomly split our data into training (80%) and testing 
(20%) data in five fold cross-validation. This method is used 
to measure our ability to predict future data based on past data. 
We use the training data to create the model and use the 
testing set as if it were new data to see how well our model 
works. The ROC curve model performed significantly better 
on the training data (Fig. 6). On the other hand, the testing 
data represents a more realistic measure of an ability to predict 
on new patients. The overall testing accuracy was around 
96%, indicating that this model can be used for early detection 
of NSCLC. With methods for early diagnosis, it could lead to 
an improved prognosis. This model can be further improved 
in the future by training the model with more data and more 
careful gene selection. 

 
IV. CONCLUSION 

In this project, we successfully detected more than 20 
genes that were both positively and negatively associated with 
cancer, specifically non-small cell lung carcinoma (NSCLC), 
and fit a logistic regression model that predicts a patient’s risk 
of cancer based on their RNA sequencing data. In the future, 
with the provided merged lung cancer transcriptome dataset, 
we would modify our predictive logistic regression model to 
take in only the genes that we found to be significant, or 
associated with cancer, hence combining my two methods. 
We would also test for significant genes at different stages of 
cancer. From this, we could predict a patient’s risk of a certain 
stage of NSCLC and their survival rate. We believe that by 
finding genes associated with cancer, we can shed light on the 
biological mechanism of cancer and raise awareness about 
these genes. Our predictive logistic regression model can be 
used for early detection of NSCLC. In addition, we believe 
that it can also be used to detect other types of cancer by 
training a new logistic regression model on another dataset. 
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DeepNeuroNet: A Novel Multiclass Model to classify Brain Tumors and 
Neurodegenerative Diseases using Machine Learning 

Vaibhav Mishra 
 

Abstract— One of the most important applications of machine 
learning is the use of deep learning models in medical diagnosis 
and treatment. This application is particularly valuable in the 
early diagnosis of brain tumors and neurodegenerative diseases 
because earlier intervention leads to better prognosis and 
prevention of more fatal conditions. Among the most widely 
affected brain disorders are brain tumors, Alzheimer’s disease 
(AD), and Mild Cognitive Impairment (MCI). These diseases 
have a high incidence of 11.3% and a high mortality rate of 40% 
[6]. Therefore, this study aimed to help with the early diagnosis 
of these diseases through the development of a new multiclass 
convolutional neural network (CNN) model to classify glioma 
tumors, meningioma tumors, pituitary tumors, AD, and MCI 
from normal patients with an overall accuracy of 88.33%. 
DeepNeuroNet was the first model that used brain MRIs to 
classify both brain tumors and neurodegenerative diseases. This 
model would have many applications including brain tumor 
detection and possible treatment research in clinical settings and 
the potential to be used for the early diagnosis of brain diseases. 

 
 

I. INTRODUCTION 

Each year, millions of people worldwide are diagnosed with 
brain tumors, Alzheimer’s disease (AD), and Mild Cognitive 
Impairment (MCI) [6]. These diseases can cause gradually 
worsening motor and cognitive functioning capabilities in 
patients and can ultimately result in death. Doctors and 
radiologists seek early diagnosis of these diseases in order to 
treat patients with the medications while the disease is still in 
mild stages to slow down progression. Before deep learning 
models, classical imaging techniques had limited accuracy 
and capabilities to classify multiple diseases. Furthermore, the 
previous techniques had longer runtimes and were often 
misdiagnosed at a higher rate. With the advances in machine 
learning, healthcare practitioners can now use deep learning 
models to fasten the diagnosis of these brain diseases. The 
advantage of deep learning models over traditional methods 
is that deep learning models are more accurate, faster, cost- 
efficient, and easier to implement in diagnosing diseases. This 
enables deep learning models to be able to detect even subtle 
brain abnormalities in MRI images faster and more accurately 
increasing the likelihood of early diagnosis. 
Recently, there have been new models developed to help with 
the early diagnosis of brain tumors. For instance, Irmak 
proposed a new multiclass model that classified brain tumors 
by location in the brain and the specific neural cell affected. 
The study focused on diagnosing glioma, meningioma, 
pituitary, and metastatic tumors from healthy patients with a 
very high accuracy of 92.66% [2]. The study also showed that 
the new convolutional neural network (CNN) model had 
a higher accuracy in classifying the tumors than VGG16 or 
ResNet. Another study by Marghalani and Arif developed a 
3-class model that classified AD, brain tumors, and healthy 
normal patients (unaffected by any neurological disorder) 

with an average accuracy of 97% [4]. There have also been 
developments in differentiating between AD and MCI from 
normal patients. Basaia et.al developed a deep learning 
algorithm that achieved a 75.4% accuracy for AD versus 
cMCI classification [5]. 
Even though there have been multiclass models that classify 
brain tumors as well as neurodegenerative diseases, there was 
no model that combined the two models into a 6-class model 
with a high accuracy, which would be highly useful in clinical 
diagnosis because of a wider range of disease classes. 
Therefore, the purpose of this study was to create a 6-class 
CNN model which could detect glioma tumor, meningioma 
tumor, pituitary tumor, AD, and MCI. This would be the first 
such model to combine the classification of the different types 
of brain tumors as well as two of the most common 
neurodegenerative diseases. This model would have great 
potential in the early diagnosis of patients. 

 
II. METHODS 

The images for the brain tumors and normal patient MRIs 
were collected from the Kaggle database [1] and the images 
for the AD and MCI images were taken from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) [3]. In total, 200 
images were collected for each disease and split into training 
(60%), validation (30%), and test subsets (10%). The number 
of images by disease class is shown below in table 1. 

TABLE 1: NUMBER OF MRI IMAGES BY DISEASE CLASS 
 

 
The images were scaled and normalized to improve accuracy. 
Data augmentation was applied to all the images including 
sharing, zooming, and flipping them. The images were trained 
in the DeepNeuroNet model for 20 epochs with the Adam 
optimizer and the categorical cross entropy loss. The 
DeepNeuroNet model consisted of 12 layers including 
convolutional layers, max-pooling layers, dropout layers, and 
batch normalization layers followed by a flatten and a dense 
layer. The total number of parameters was 346,374. 
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III. RESULTS 

 
Figure 1: Model Accuracy for Training and Validation 

 
 

 
 

 
Figure 3. Confusion Matrix for DeepNeuroNet 

After running the DeepNeuroNet model for 20 epochs, the 
model accuracy and loss graphs were generated as shown in 
Figure 1 and Figure 2 respectively . Then, the training set was 
run on the model. The model correctly classified 106 images 
from the original 120 MRI images as shown in Figure 3. Thus, 
the overall test accuracy was 88.33%, a relatively high 
accuracy for a 6-class model [4]. 
The classification report on the precision, recall, support, and 

f1-scores of each of the 6 classes was also generated (Table I) 
. The model recognized AD and MCI the best with a 95% 
precision for both classes. This could be a result of the more 
prevalent features of AD and MCI compared to the 3 classes 
of tumors which were hard to distinguish from each other. 

 

Figure 3: Confusion Matrix for DeepNeuroNet 

Overall, the model performed well and achieved high training 
and testing accuracy with fewer parameters than many other 
studies meaning that the model was quicker and more 
efficient in classifying more diseases. Although there have 
been many multiclass models for brain diseases like a 4-class 
model developed by Singh et.al [6], the DeepNeuroNet model 
proposed in this study was the first model to conduct a 6-class 
diagnosis of neurological disorders with such a high accuracy. 

 
IV. CONCLUSION 

The DeepNeuroNet model was proposed and shown to 
achieve a high accuracy in classifying glioma tumors, 
meningioma tumors, pituitary tumors, AD, and MCI from 
normal patients making it the first model to use a novel CNN 
architecture to achieve a 6-class diagnosis. This model has the 
potential to help with the early diagnosis of brain tumors and 
neurodegenerative diseases and therefore, save millions of 
lives worldwide. Further studies could enhance this model by 
adding more classes of diseases including PSP, MSA, and 
CBD as well as using non imaging data like gene expression 
to help the model be able to classify at a higher accuracy 
through a wider range of data. 
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Enhancing Efficacy and Cost Effectiveness of Air Filtration Systems 
by Optimized Nanoparticle Deposition 

Ishika Nag 
 
 
 

Abstract— Every year, seven million people die from severe 
cardiovascular and respiratory diseases, caused by ambient and 
household air pollution. An increase in air pollution from 
particulate matter less than 2.5 microns in diameter (PM2.5) has 
shown to be a significant contributor of cardiovascular and 
respiratory diseases. The goal of this study was to develop an 
efficient and cost-effective air-filtration system by the 
impregnation of selected nanoparticles, utilizing their high 
surface-to-volume ratio to entrap PM2.5. The experimental set- 
up consisted of a wind tunnel with incense sticks as the 
particulate matter source, measured by laser particle detectors 
upstream and downstream of the filters. Results found that a 
mixture of zinc oxide, titanium dioxide & graphene improved 
filtration efficiency of a baseline filter by 206%. There was also 
a 70% improvement in the cost of the filters. The versatility and 
cost-effectiveness of this design makes it applicable for personal 
masks & filters, air-conditioning filters, car-cabin filters, and 
fire-fighting equipment. The correlation between air pollution 
and fatalities from viral infections suggests that abatement 
technologies with innovative filtration systems are critical in 
saving human lives. 

I. INTRODUCTION 

Seven million people die every year because of air 
pollution [1]. The majority (91%) of the world's population 
lives in locations exceeding the World Health Organization’s 
air quality guidelines. Due to its small size, PM2.5, particulate 
matter less than 2.5 microns in diameter, is capable of 
penetrating deep into lung passageways and entering the 
bloodstream, causing and aggravating cardio-vascular, 
cerebro-vascular, and other respiratory diseases [2]. 
Furthermore, long-term exposure to air pollution has been 
found to increase the vulnerability of contracting COVID-19 
[3]. An increase of only 1 µg/m3 in PM2.5 is associated with an 
8% increase in the COVID-19 death rate in the United States 
[3]. Abatement technologies such as ionic and High Efficiency 
Particulate Air (HEPA) air filtration systems [4] have been 
developed to filter PM2.5 particles,but remain quite expensive 
and hence unaffordable to communities with limited resources 
[5, 6]. Therefore, a cost-effective and efficient abatement 
system is essential to help resolve the issue. 

Nanoparticles have a high surface-to-volume ratio, which 
enhances the entrapment of particulate matter by adsorption. 
The surface adsorption energy is unique to the small size of 
nanoparticles with extremely high surface to volume ratios, 
where the unsaturated surface chemical bonds tend to adsorb 
other chemicals or biomolecules to reduce their surface energy 
[7]. The three nanoparticles used for this study were graphene, 
titanium dioxide (TiO2), and zinc oxide (ZnO), which have 

 
been known to have filtration properties due to their high 
adsorption capabilities [8, 9, 10]. Graphene, an allotrope of 
carbon consisting of a single layer of carbon atoms arranged 
in a hexagonal lattice structure, has high adsorption capacities 
mainly due to these unique nanostructures, and hence have 
been proven to be efficient in the capture of particulate matter 
[11, 12]. 

The current work is aimed to develop an efficient and cost- 
effective air-filtration system by an optimized deposition of 
nanoparticles, based on their air filtration capabilities, clinical 
safety, and non-toxicity. The filtration system needs to be 
versatile and effective at different pollution levels in different 
parts of the world. The goal of this work is to also develop a 
simple application technique of the nanoparticles such that it 
can be easily applied to various filtration systems, thus 
providing an affordable alternative to expensive high quality 
air filtration devices with comparable air filtration capabilities. 

 
II. METHOD 

The nanoparticles (NPs) used for this study were titanium 
oxide    (TiO2),    zinc    oxide    (ZnO)    and    graphene.    The 
combination of NPs was mixed with ethanol to create a 
suspension. This was then aerosolized and sprayed on to the 
air filters, using the pressurized sprayer system. A ‘high- 
quality’ air filter (MERV-14, FPR-10, HEPA) was used for 
comparison and benchmarking the filtration efficiency in 
order to validate the results from this experiment, compared 
to previously performed studies [13]. The deposition method 
of NPs onto the filtration media was also varied and tested for 
uniform spatial distribution. Different spray mechanisms 
were tested using pipettes, spray bottles and pressurized 
sprayers. Different zones of the air filter, in 9 locations, were 
tested for spatial consistency in filtration efficiency (Fig. 1). 
The pressurized spray application resulted in the most 
uniform spatial distribution of the NPs, and it was chosen as 
the preferred application method for its simplicity and 

 

effectiveness. 
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Figure 1. The pressurized sprayer system demonstrated better nanoparticle 

deposition uniformity, verified with the spatial consistency test. 
 

The surface morphology of the filters was characterized 
using the scanning electron microscope (SEM) imaging 
technique, confirming the adhesion of nanoparticles to the 
filters in the ‘before’ images and the entrapment of particulate 
matter onto the nanoparticle surfaces in the ‘after’ images of 
the different nanoparticle coated filters (Fig. 2). 

 
 

 
Figure 2. Scanning Electron Microscope (SEM) images of uncoated and 

coated filters before and after exposure to PM2 . 5     particles, confirm the 
adhesion of NPs and entrapment of PM2 . 5. 

 

A full-factorial Design of Experiments (DOE) statistical 
analysis model was used to randomize the run order of the 
experiment, minimize bias, and aid with the Analysis of 
Variance (ANOVA) study. A statistical repeatability and 
reproducibility study (Gage R&R) was used to determine the 
measurement uncertainty of the experiment. The tests were 
repeated for 10 trials each. As seen in Fig. 3, 95% of the 
contribution was from ‘part-to-part variation’ and 5% from the 
process variation. 

 
 

Figure 3. The Gage Repeatability and Reproducibility analysis of the 
experimental set-up indicating acceptable levels of measurement 

uncertainty 
 
 

III. EXPERIMENTAL DESIGN 
A wind tunnel was designed and created to test for the 

efficiency of the filters (Fig. 4). Incense sticks were used as 
the source of PM2.5       and laser particle detectors measured the 
PM2.5          at  the  inlet  and  outlet  sections  of  the  wind  tunnel.  A 
manometer was used to measure pressure drop, and a lamp 
was used on the TiO2-coated filters for photocatalysis testing. 

 
 
 

 
 
 

Figure. 4. The experimental set-up included a wind tunnel with a fan, 
incense sticks to simulate the PM2 . 5     and laser particle detectors to measure 

filtration efficiency. 
 
 

IV. RESULTS AND DISCUSSION 
The results showed (Fig. 5) that the concentration of NPs 

has a direct correlation to the filtration efficiency (1). The 
correlation between nanoparticle type and filtration efficiency 
was also observed, with TiO2     coated filters demonstrating the 
highest efficiency. 

 
 

 
Figure. 5. Increase in nanoparticle concentration on coatings improves 

filtration efficiency 
 
 
 

The TiO2 coated filters had a 7% increase in filtration 
efficiency when placed under light. TiO2, with its 
photocatalytic properties, absorbs the ultraviolet component 
of sunlight which excites the electrons from its valence band 
to the conduction band. They act as a catalyst to form the 
superoxide anion (O•- ) and reactive hydroxyl (OH•) radicals 
from atmospheric moisture and oxygen. They are then able 
to react with the PM2.5 particles converting them into CO2 

and H2O [14]. 
A significant parameter that affects the filtration system’s 

energy consumption is its pressure drop. Pressure drop was 



 
 
calculated by using the Bernoulli equation, which is given 
by (Eq. 1):  

 
. Assuming a  steady, incompressible, and frictionless flow 

along a streamline, with the same horizontal height; this can 
be simplified to the pressure drop equation (2): 
 

  
          
A quantitative test of airflow, conducted by measuring the 

pressure drop (Δp) across the filter, determined that the 
application of NPs to air filters does not affect their energy 
consumption in a measurable way. 

The NP coatings consistently demonstrated the ability to 
improve the filtration efficiency of a baseline filter (Fig. 6). 
The filter, coated with a mixture of the three-NPs, had the 
highest filtration efficiency which was 206% higher than a 
baseline filter. The filtration efficiency of this filter, at 77%, 
was quite comparable to the more expensive ‘high-quality’ 
FPR10 filters. The filter coated with TiO2 alone was also 
quite effective, but less versatile due to its dependence on 
light for activation of its photocatalytic properties. 
 

Fig. 6 The Gr/ZnO/TiO2 combination is 206% more effective than a 
baseline uncoated filter and is almost similar to a ‘high-quality’ HEPA filter 
 

An accelerated durability testing was also performed to test 
the effectiveness of the filters over longer usage periods. 90% 
of the filter’s effectiveness was maintained after 50 equivalent 
days of operation. 

Considering the baseline cost of a commercially available 
filter and the additional cost of NPs and processing, the 
nanoparticle coated filters were 70% cheaper than the HEPA 
filters, and 99% cheaper than ionic filters (Fig. 7).  

Fig. 7. NP coated filters are significantly less expensive than HEPA or ionic 
filtration systems, while having comparable filtration efficiency. 

V. CONCLUSION 

The nanoparticle coatings consistently demonstrated the 
ability to improve the filtration efficiency of a baseline 
filter. The mixture of the three nanoparticles - graphene, 
TiO2 and ZnO - improved the efficiency of a baseline filter 
by 206%. The TiO2 coated filter was also quite effective and 
demonstrated its photocatalytic effectivity, but less 
versatile due to its dependence on light.  Cost-effectiveness 
was one of the main objectives of this experiment in order 
to make this technology available to societies with limited 
resources. Considering the baseline cost of a commercially 
available filter and the additional cost of nanoparticles and 
processing, the nanoparticle coated filters were 70% 
cheaper than the HEPA filters, and 99% cheaper than ionic 
filters. The safety of nanoparticle usage is of utmost 
importance and continues to be a subject of research 
worldwide[15, 16]. The nanoparticles chosen for this study 
are known for their clinical safety and non-toxicity and are 
extensively used in cosmetic and biomedical applications, 
e.g., pill coatings, sunscreens[17]. These NP coatings can 
be used in several applications including face masks, air-
conditioning and car cabin filters, fire-fighting masks, and 
industrial pollution control systems. The versatility and 
effectiveness of this nanoparticle coated filtration system 
makes it applicable for varying pollution levels in different 
parts of the world. There is a significant correlation 
between air pollution and deaths from respiratory diseases 
and virus infections like COVID-19 [3]. Such novel and 
cost-effective filtration systems may help in abating the 
life-threatening impacts of air pollution. 
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Pecan: A Novel Approach to Energy Supply and Demand 
Forecasting in a Photovoltaic Microgrid 

Andy Xu 
 
 

Abstract— The adoption of renewable energy is crucial to 
curbing carbon emissions. Localized on-site generation methods 
such as microgrids are implemented due to their improved 
reliability and the ease of inclusion of renewable energy 
generation. However, current forms of renewable energy 
generation are unreliable. Accurate forecasting of both energy 
supply and demand are crucial in the transition towards a 
renewable energy grid and reducing reliance on fossil fuel 
reserves. Pecan is a novel solution that combines custom deep 
learning models for energy supply and demand forecasting with 
an artificial neural network solution. Pecan uses a novel loss 
function to prioritize grid stability while simultaneously 
decreasing carbon emissions through a lower error rate. Mean 
absolute percentage error (MAPE) was used to measure model 
performance and calculate emission reductions. The supply 
forecasting prediction from Pecan achieved a MAPE of 1.17%, 
and the demand forecasting prediction achieved a MAPE of 
1.05%. The improved performance of Pecan increases the 
feasibility and profitability of microgrids and renewable energy 
solutions. 

 

I. INTRODUCTION 

Due to growing concerns regarding the effects of fossil 
fuel emissions, the importance of renewable energy resources 
has grown markedly in recent years. Currently, the industry 
standard for power management is a centralized power grid 
largely dependent on fossil fuels. However, centralized power 
grids present two major problems. First, the rigid, inflexible 
centralized grid is unable to accommodate the unpredictable 
nature of current distributed energy resources(DERs). 
Second, energy is often lost when travelling large distances 
between energy generation and consumption locations [1]. 
Distributed, or on site generation, has been proposed as a next 
generation smart grid solution. This method proposes 
advantages due to its ability to generate energy locally, 
greatly reducing the energy lost in transmission, and its 
superior reliability and resilience due to its small scale and 
isolation [2]. 

Short-term energy supply and demand forecasting are 
necessary to make informed and reliable decisions for 
distributed energy systems [3]. Currently, reserve scheduling 
ensures that there are adequate reserves in place when energy 
demand exceeds supply. These reserves are most commonly 
fossil fuels due to the necessity of immediate generation. 
Improvements in energy supply and demand forecasting have 
the potential to greatly reduce the necessity of fossil fuel 
reserves and fossil fuel energy generation as a whole. They 
also have the potential to increase grid stability by greatly 

reducing potential mismatches of supply and demand. 

Multiple deep learning techniques have been proposed in 
the past for energy supply and demand forecasting. These 
include artificial neural networks (ANN), convolutional 
neural networks (CNN), recurrent neural networks (RNN), 
Long short-term memory networks (LSTM) and bidirectional 
long short-term memory networks (BLSTM) [4]. 

The purpose of Pecan is to develop a comprehensive deep 
learning solution for energy supply and demand in a 
microgrid that is more accurate and reliable than industry 
standards. In the present study, a novel method is developed 
to connect energy supply and demand forecasts to produce an 
intelligent demand response. 

 
II. METHODS 

The primary microgrid dataset used for both energy 
supply and demand predictions was the UC San Diego 
Microgrid [5]. For this dataset, 48 hours of energy demand 
data in kilowatts was inputted into the energy model. The 
month, day, and hour were used as inputs due to strong 
seasonal correlations between time and energy consumption. 
Temperature, taken from the National Oceanic and 
Atmospheric Administration(NOAA) located at the San 
Diego Airport, was also used as an input. 

The energy generation forecasting model took in the 
energy generation from distributed solar PV generators 
throughout the San Diego Microgrid. The model inputted 
multiple solar irradiance metrics, including Global Horizontal 
Irradiance (GHI), Direct Normal Irradiance (DNI), and 
Diffuse Horizontal Irradiance (DHI). The same temporal 
variables as the energy load forecasting model were used for 
the energy generation forecasting model. 

Both energy supply and demand forecasting models used 
the same novel deep learning model structure to achieve a 
lower forecasting error. The model contains a LSTM layer, 
followed by 3 bidirectional LSTM layers, followed by another 
LSTM layer, then finally followed by 2 artificial neural 
network layers. Dropout and batch normalization was used 
between each layer to prevent overfitting of the model. 

The data was split into two parts with 90% being used for 
training the model and the remaining 10% being used for 
validation and testing the model accuracy. Temporal isolation 
was ensured to prevent overfitting and combat bias. To 
measure model performance, mean absolute percentage error 
(MAPE) was used. Pecan was compared to a standard ANN 
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model, a smart persistence model, and the current industry 
standard. The smart persistence model used the data from the 
last 24 hours to generate a prediction of equal value for the 
next 24 hours. 

 
III. RESULTS 

The energy generation forecasting portion of Pecan 
achieved a Mean Absolute Percentage Error (MAPE) of 
1.13%. This was an 87% decrease compared to the Smart 
Persistence model, a 75% decrease in MAPE compared to the 
Artificial Neural Network (ANN) model and a 62% decrease 
in MAPE compared to the industry standard models. 

 
 

 
Figure 1. Energy Generation Prediction Model Comparison 

 
 

 
Figure 2. Energy Generation Prediction and Real Value Comparison 

Visualized 

The load forecasting portion of Pecan achieved a MAPE 
of 1.05%. This was an 89% decrease compared to the Smart 
Persistence model, a 72% decrease in MAPE compared to the 
Artificial Neural Network(ANN) model and a 65% decrease 
in MAPE compared to the industry standard models. 

 
 

 
Figure 3. Energy Load Prediction Comparison 

 
 

Figure 4. Energy Load Prediction and Real Value Comparison 
Visualized 

 
IV. DISCUSSION 

 
The development of Pecan demonstrates the applicability of a 
novel neural network solution to energy supply and demand 
predictions. Pecan’s more accurate supply and demand 
forecasts can be used to improve accuracy in the unit 
commitment problem, thereby increasing forecasting 
reliability, and greatly improving grid stability and national 
security. Pecan also has large-scale economic benefits, as 
improvements in energy forecasting accuracy allow for 
improved energy price forecasting, as well as lower energy 
purchasing from the central grid. Pecan helps to increase the 
feasibility and profitability of microgrids and renewable 
energy. Future research can build off of Pecan’s novel 
network structure to test on a wider range of microgrid 
datasets to ensure generalizability, and can apply Pecan’s 
novel structure to other forms of distributed energy resources 
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Abstract— In studying the Andromeda Galaxy to better grasp 
its physical components—particularly its northeastern region— 
we utilized Python code to simulate its halo and disk. Using 
previously observed data and various formulas, such as one that 
calculates the density distribution of stars, we closely modeled 
the real dimensions of Andromeda’s halo and disk. Moreover, 
looking at different velocity dispersions along the height, radius, 
and angle axis helped us further understand Andromeda’s 
actual dispersions. Comparing models with different 
percentages of stars in the thick disk and halo, we found that 
both the thick disk and the halo had minimal effect on the 
observed dispersion. Furthermore, we had difficulty observing 
overarching dispersion trends brought about by changing the 
dispersion coordinate variables. Based on these observations, a 
more natural and substantial dispersion of Andromeda can be 
concluded. As we continue, our analysis will assist us in fine- 
tuning the model, more accurately simulating the Andromeda 
Galaxy, and eventually adapting the code to forward model any 
galaxy. 

I. INTRODUCTION 

As the brightest and largest galaxy within our own cluster 
of galaxies, the Andromeda Galaxy has its own unique 
attributes [1]. Yet, this huge collection of gas, dust, and 
billions of stars, along with their solar systems, is identical to 
every other galaxy in that it is held together by gravity. 
Andromeda has three main parts—the bulge, a dense ball of 
stars at its center; the disk, a thick and less dense disk of stars; 
the halo, a dimmer, sparsely populated cluster of stars 
surrounding it. Because Andromeda is nearby and frequently 
observed, it is often used as a starting point for galaxy models 
[4]. Specifically, previous research conducted by J. 
Veljanoski, among others, examined the velocity dispersion of 
Andromeda’s outer halo globular cluster system and discusses 
various formation scenarios for Andromeda [3]. Therefore, 
there is a considerable amount of information available 
regarding Andromeda. However, we remain unsure about 

much of the details of its 
evolution. Understanding the 
dynamics of its stellar 
population could help us 
understand the history of 
Andromeda’s formation, as 
well as the formation of other 
large galaxies, including our 
own. Likewise, there remains 
debate over the external and 

coding a model illustrating the stellar kinematics of the thick 
disk and halo of the Andromeda galaxy. 

 
II. METHODS 

By creating a simulation of Andromeda via Python code, 
we will eventually be able to forward model any galaxy, 
helping us better understand far off galaxies as well as our 
very own Milky Way. We fine-tuned the code of our model 
to Andromeda in particular because of its close proximity to 
us, similarity to the Milky Way, and familiarity to 
astronomers. Our model was created with Jupyter Notebook 
and implements the libraries NumPy, to perform operations 
on arrays, and Matplotlib.pyplot, to generate graphs of the 
galaxy. However, this model only includes the disk and halo. 
We also limited the code to Red Giant Branch Stars within the 
Northeastern part of Andromeda (Fig. 1) as they are larger, 
brighter, and therefore easier to observe than stars like our 
sun. Hence, we modeled the dispersion of velocities of Red 
Giant Branch Stars in Andromeda’s Northeastern disk and 
halo. Both the simulated halo and disk are projected in 
cylindrical units. However, the spherical halo is modeled in 
two dimensions because it appears as a circle no matter what 
angle it is viewed at, whereas the disk is projected in three- 
dimensional space due to its thickness. To allow for direct 
comparison between the physical quantities generated by our 
simulation and the spectral line profiles shown by 
observations, we must create a model to generate data that can 
be closely compared with observed data. This technique is 
known as forward modeling [6]. Utilizing this approach, we 
built our code around known parameters and then adjusted the 
unknown parameters to match observed data. Initially, we had 
Andromeda’s sky position and two velocity components as 
known parameters. These variables were included in existing 
code that modeled the distribution of Red Giant Branch Stars 
and the dispersion of their radial velocities in Andromeda’s 
disk. But, the initial model only had one overall dispersion 
variable and did not include Andromeda's halo. 

After subdividing the original dispersion variable into 
three different variables for dispersion along the phi angle 
(!"), the z coordinate or height (!$), and the radius (!%), we 
used the equation seen in Equation 1: C being the expected 
total dispersion of Andromeda when observed. We input the 
variable we knew, !$; plugged in various possible numbers 
for one unknown, !"; and solved for the other, !% . This 

Figure 1. White outline 
indicates the observed 

(northeastern) region of 
Andromeda. [2] 

internal factors begetting 
dynamical heating of stellar 
disks, including the central bar, 
dwarf satellite bombardment, 

resulted in various plausible data sets that we could plug into 
the model and then compare to Andromeda to help narrow 
down what Andromeda's actual !"	and !%	are. 

molecular clouds, and dark matter substructure. Hence, we are !&	+	!&	+	!&	=	)&	
%	 "	 $	
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Equation 1. The formula for C or the expected total dispersion of 
Andromeda observed, where !"	describes dispersion along the phi 

angle, !%	describes dispersion along the radius, and !$	describes 
dispersion along the z coordinate or height. 

Triangulum galaxy. Additionally, future investigations could 
focus on determining the effect of Andromeda’s bulge 
component on the galaxy’s kinematics. 

We then modeled the halo in two-dimensional space. 
Equation 2 illustrates the power-law formula we used for 
determining the density of stars in relation to the radius. This 
formula accounts for how stars from the halo begin to 
dominate as the density of the stars from the disk falls off, as 
indicated from analysis of Andromeda’s luminosity profile 
[4]. Thus, we simulated the stars in the halo according to the 
distribution defined by Equation 2. On the other hand, the 
velocity dispersion of the stars in the halo was generated 
randomly within the bounds of our observed data. 

 

 
Equation 2. The formula for the density of stars in relation to the 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Model of the disk and 
halo of the Andromeda galaxy 
with 95% contribution of stars 
from the disk and 5% from the 
halo. The xi and eta axis labels 
are placeholders for coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Illustrates the radial 
velocity within Andromeda’s 
disk where  !%	equals 60, !"	

equals 60.03, and !$	equals 20. 
The xi and eta axis labels are 
placeholders for coordinates. 

radius, where R’ is the observed projected radius, Rc is the halo 
core radius, α is the halo surface brightness profile power-law 

index, and w represents a random number uniformly distributed 
between zero and one. 

 
Finally, we periodically adjusted the free parameters and 

compared the different simulations of Andromeda with the 
Andromeda observed in the sky. We primarily focused on 
how stars within the halo impacted the observed dispersion 
profile. This meant thoroughly analyzing the ratio of halo 
stars to disk stars and its effect on the simulated galaxy’s 
velocity dispersion. Additionally, we looked for significant 
trends in dispersion as we altered the !"	and !%	variables. 

 
III. RESULTS AND DISCUSSION 

Overall, we discovered that the projection effects from the 
thickness of the disk were less pronounced than we previously 
thought. This suggested that there is an intrinsic dispersion 
unaffected by the halo. From these observations, the halo 
appears to be subdominant, having little to no effect on the 
dispersion within the surveyed region. Moreover, we found it 
extremely difficult to perceive overarching trends as !%	and 
!"	 changed. This implies that there is no observable 
dispersion contribution from the thick disk. However, based 
on our observations, the thick disk and halo do not account 
for much of Andromeda’s overall dispersion. Ultimately, our 
findings were limited to what we could clearly discern with 
the human eye. Accurately and precisely observing such 
large amounts of data within a model displayed on a computer 
monitor would unavoidably prove difficult. However, 
unnoticed does not denote unnoticeable. In fact, existent and 
important trends could be uncovered with further research. By 
forward-modeling our observations of Andromeda, we are 
able to better understand the structural and kinematical 
properties of its thick disk and RGB stars, thereby helping to 
create a more realistic model which may be applicable to 
kinematical data of similar, nearby galaxies, such as the 

Our team has been awarded the most time of the Hubble 
Telescope’s upcoming cycle 29, which will allow us to 
observe a broader area of Andromeda in greater detail. We 
will continue improving the model, broadening the 
parameters within Andromeda, and exploring the relationship 
between !%	and  !". 
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Abstract— The role of TDP-43 and its prion-like features in 
Alzheimer’s disease (AD) represents a new avenue of research 
concerning the pathogenesis of the disorder. Research has 
focused on identifying proteins involved in inducing 
aggregation/toxicity of the illness, with the Tau and ß-amyloid 
proteins being primarily responsible. The TDP-43 protein was 
first discovered in 1995 and has attracted considerable interest 
in recent years. This review details the structural and 
functional characteristics of TDP-43. Special emphasis is given 
to the post-translational modifications and mutations that 
accompany neurotoxicity and protein aggregates found in the 
brain tissue of AD patients. The interface of TDP-43 with other 
proteins involved in AD progression is also elucidated based on 
studies in this regard. Investigations using animal models with 
the intent to identify potential therapeutic strategies to combat 
the disease have also been outlined in this work. 

I. INTRODUCTION 

Alzheimer’s disease (AD) is a progressive 
neurodegenerative disease identified by the death of brain 
cells, initially observed in the frontotemporal lobes of the 
brain, characterized by symptoms such as impaired neuronal 
transmission, brain atrophy and consequent shrinkage [1], [2]. 
External manifestations of AD include dementia, involving 
memory loss and declining cognitive and social skills. Of the 
50 million cases of dementia worldwide, 60-70% have been 
diagnosed as Alzheimer’s, as indicated by WHO statistics [2]. 

In 1906, Alois Alzheimer, a clinical psychiatrist and 
neuropathologist at Frankfurt Psychiatric Hospital, provided 
the first description of Alzheimer’s disease as a ‘peculiar 
severe disease process of the cerebral cortex’ [3], and this 
disease continues to remain a mystery in some major aspects. 
Brain scans of AD patients have revealed extracellular 
parenchymal and intraneuronal aggregates of proteins, 
primarily the beta-amyloid and Tau proteins, leading to the 
formation of amyloid-beta (Aß) plaques and neurofibrillary 
tangles (NFTs) respectively [4]. Authors have also 
hypothesized that the onset of the disease could be related to 
prions, or prion-like polymorphisms of proteins, as observed 
in the case of the Tau, Aß, or even the TDP-43 protein [5], 
[6]. 

Prions are misfolded proteins which have been identified 
as causative agents of disorders such as Creutzfeldt-Jakob 
disease. Also, prions multiply via the conformational 
conversion of normal cellular prion proteins (PrPc) to the 
disease-causing (PrPSc) isoforms [7], [8] rather than the 
conventional nucleic acid replication. 

 

Aberrant processing during polypeptide synthesis due to 
mutations in the prion protein gene dictate the specific 
abnormality of the neurons in the disorder [9]. In the context 
of AD, versions of Tau and Aß proteins are observed to adopt 
prion-like properties, causing them to spread through the 
brain to induce neurotoxicity. Thus, authors have suggested 
that these proteins could be potential culprits for progression 
of the disease [10]. 

 
II. EFFECT OF MUTANT PROTEINS 

Familial Alzheimer’s disease (FAD) is an autosomal 
dominant disease. Mutations in the amyloid precursor protein 
(APP), presenilin 1 or 2 genes have been reported to result in 
FAD [9]. APP undergoes hydrolysis to form Aβ peptides that 
are responsible for the amyloid fibrils found in the plaques of 
AD brains [11]. APP is cleaved at residue 671 by β-secretase 
to form the Aβ (1-40) fragment and at residue 711 or 713 by 
γ-secretase to form the Aβ (1-42) fragment as depicted in Fig. 
1 [9]. These Aβ (1-42) peptides can cause disruption in the 
central nervous system [9], [12] whereas the Aβ (1-40) 
fragment is mainly present in the amyloid fibrils of the plasma 
and cerebrospinal fluid [12]. Plaque formation is reported due 
to Aβ peptides that are influenced by specific mutations 
(APP695, APP751, APP770) of the truncated APP gene, 
which are commonly located at cleavage sites of β-secretase 
and γ-secretase [13]. 

 

 
Figure 1. The C-terminus of the APP protein. The secretase cleavage sites 

and some mutations in the protein are depicted. Aβ, amyloid-beta; TM, 
transmembrane domain (Reproduced from [13]) 

Apart from the two key proteins Tau and Aβ, TDP-43 has 
also been implicated in the neurodegenerative processes 
occurring in AD [11]. For these reasons, studies conducted on 
TDP-43 have been reviewed in order to explore the likelihood 
of this protein as a potential therapeutic target. 



32 

 

 

  III. TDP-43 PROTEIN amygdala (stage 1), followed by the subiculum entorhinal 
cortex (stage 2), the hippocampus and occipitotemporal 

Structure 

The TAR DNA binding protein (TDP-43) of 43 kDa is 
encoded by the TARDBP gene of 6 exons at the 1p36.22 locus 
[14]. This heterogenous ribonucleoprotein (hnRNP) of 414 
amino acids [15] is localized primarily in the nucleus [16]. It 
consists of an N-terminal domain (NTD) and C-terminal 
domain (CTD), which is characterized as a prion-like domain 
[16]. The protein also has 2 RNA recognition motifs (RRM), 
and a nuclear localization signal (NLS) domain. The structure 
is depicted in Fig. 2. 

 

Figure 2. The TDP-43 protein structure and important domains 
(Reproduced from [17]) 

cortex (stage 3), the ventral striatum, insular and temporal 
cortices (stage 4), the brainstem (stage 5) and finally the basal 
ganglia and midfrontal cortex (stage 6) as reported by [6], 
[11]. 

The TARDBP gene was found to have mutations in 
genetic cases of ALS and FTLD [16], [22], but few 
researchers have assessed this gene in relation to AD [1]. A 
clinical trial consisting 181 AD patients and 130 controls in a 
Japanese population with 8 TARDBP gene polymorphisms 
observed no significant relationship [1]. Yet, it is still likely 
that the TDP-43 and Aβ/tau protein are related. Results show 
that Aβ deposits cause can cause abnormal TDP-43 
aggregation and that TDP-43 is involved in tau aggregation 
[11]. Thus, TARDBP gene mutations could be responsible for 
the abnormal, mutated behavior of TDP-43, indicative of the 
need for more research on TDP-43 mutations pertaining to 
AD. 

Function 

The overall function of TDP-43 under nontoxic conditions 
includes the RNA regulation during transcription, mRNA 
stabilization, and alternative splicing [16]. The specific 
function of each domain is detailed in Table 1. The CTD is a 
low complexity sequence that can transition between alpha- 
helix and beta-sheet structures, similar to how prions trigger 
the onset of a disease [1], [18]. This, along with the prevalence 
of pathogenic TDP-43 in 20-50% of AD cases [11], has led 
researchers to suspect that TDP-43 could also be a possible 
contributor to the toxicity observed in AD brains [16]. 

 
 

TABLE I. STRUCTURAL AND FUNCTIONAL ANALYSIS OF THE 
TDP-43 PROTEIN DOMAINS [19] 

 
Domain Residual 

Position 
Function under Non-toxic Conditions 

NTD 1-77 Protein dimerization and oligomerization 
[16], [20] 

NLS 78-100 Translocation of TDP-43 from nucleus to 
cytoplasm for cytoplasmic accumulation of 
proteins [4], [15] 

RRM1 106-177 Specific RNA binding [4], [15] 

RRM2 192-259 Specific RNA binding [4], [15] 
CTD 260-414 Phase separation, aggregation, solubility, and 

protein homeostasis [16], [20] 

 
 

Proteinopathies involving TDP-43 

Studies have shown strong evidence for TDP-43 as a 
pathological hallmark for frontotemporal lobar degeneration 
(FTLD) and amyotrophic lateral sclerosis (ALS) [21]. TDP- 
43 localization in AD brains has also received attention in 
recent times. TDP-43 deposits as inclusion bodies in neuronal 
and glial cells of the central nervous system and spreads 
through the brain in 6 stages. The accumulation begins in the 

 
III. POST-TRANSLATIONAL MODIFICATIONS (PTMS) 

OF TDP-43 

The TDP-43 protein can undergo multiple PTMs 
including truncation, ubiquitination, phosphorylation, and 
acetylation. As a target for multiple PTMs TDP-43 may 
contribute to AD progression in multiple ways. It should be 
noted that although there is evidence suggesting TDP-43 
PTMs can stimulate aggregation [19], some studies also 
report PTMs occurring post-aggregation (refer to the 
Phosphorylation section) [23]. Consequently, whether these 
PTMs are the cause or the effect of aggregations is still 
unclear. 

 
Truncation 

The cleavage of TDP-43 leads to the formation of N 
terminal fragments (NTFs) or C terminal fragments (CTFs), 
depending on the cleavage site. The NTFs retain their 
function and break down in the nucleus, whereas CTFs 
translocate to the cytoplasm and aggregate [24]. The 
truncation of the RRMs affects the ability of the protein to 
carry out RNA regulation/binding and dimerization. 
Furthermore, the removal of part of/the whole NLS domain 
triggers further cytoplasmic protein aggregation [19]. 
Proteolytic cleavage at the 89/90 position and at position 
169/170 or 174/175 produces TDP-35 and TDP-25, which are 
other commonly occurring fragments [19]. As studied by Li 
et al., western blot analyses of such TDP-43 fragments show 
higher levels of insolubility and therefore propensity to 
aggregate [23]. 

 

Ubiquitination 

Ubiquitination involves the binding of the ubiquitin 
protein to TDP-43 [19]. This PTM regulates the 
activation/inactivation, localization and interactions of 
proteins. Common ubiquitination sites are lysine residues, 
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particularly at positions 160, 181, and 263. François-Moutal 
et al. found that the K181 residue could disrupt the 
secondary/tertiary structure of TDP-43 due to the changes in 
the interactions between the RRM domains or between the 
RRMs and NTD. It is also observed that the K263 residue can 
be easily ubiquitinated to decrease levels of RNA binding and 
aid in aggregative tendencies [19]. 

Phosphorylation 

Phosphorylation involves the addition of phosphate 
groups to amino acids in the TDP-43 sequence. Abnormal or 
hyper-phosphorylation is also known to indicate 
neurotoxicity [19]. In fact, hyperphosphorylation of the tau 
protein in AD triggers the formation of NFTs [11], [25]. 
Serine residues, and less commonly threonine residues, are 
common phosphorylation sites. Interestingly, the CTD 
contains such serine and threonine residues [18]. This 
suggests that TDP-43 phosphorylation promotes aggregation 
and neurodegeneration [24]. However, the effect of this PTM 
is debatable, with certain studies suggesting the PTM serves 
a cytoprotective function, easing proteotoxic stress caused by 
accumulation of misfolded proteins and aggregates [24]. 
Either way, phosphorylation appears to play a key role in the 
progression of TDP-43 proteinopathies in a disease like AD. 

 
Acetylation 

Acetylation involves the addition of acetyl groups to 
amino acids in the TDP-43 sequence. The common target for 
acetylation are lysine residues [19]. This process can occur 
via various mechanisms such as RNA processing, 
cytoskeleton association, and cellular signaling [19]. The 
specific position undergoing acetylation could be Lys82 and 
192 [19]. Cohen et al. have reported the occurrence of 
inclusion bodies in the cytoplasm reminiscent of TDP-43 
proteinopathy aggregates [21]. 

IV. STUDIES INVOLVING ANIMAL MODELS 
OVEREXPRESSING PROTEINS IMPLICATED IN 

AD 

Transgenic Mice Models: Advantages and Limitations 

Mice are commonly used animals in studies due to their 
genetic similarity to humans. Wild type mice were found to 
exhibit 97% and 88% sequence homology to the human 
version of the APP and Tau proteins respectively [4]. When 
these mice overexpress APP, their pathology is reminiscent of 
AD pathogenesis. The Aß plaques are composed of the Aß 
(42) peptide, ubiquitin, and α-synuclein, among other 
constituents. α-synuclein is of special note as it has been 
characterized as “prion-like” following studies using animal 
models [12]. The mice, like human patients, were also 
observed to develop cognitive impairments which were not 
directly proportional to Aß plaque formation [26]. 

However, although mice can produce Aß, the plaque 
formation and development of AD-like characteristics are 
dependent on the APP mutations which resemble FAD, but 
not sporadic AD cases. The development of NFTs is also 

absent in these models. Nonetheless, if mutant APP and 
several other proteins are present, age-dependent 
development of both Aß plaques and NFTs can form in mice 
[26], [4]. 

 
Non-human Primate Models: Advantages and 
Limitations 

Nonhuman primates are preferable models to study 
disease development in that their “behavioral complexity,” 
brain size, and genetics are highly similar to that of humans. 
In fact, their Aß and tau protein have 100% and 99.5-100% 
sequence homology with the human forms respectively, and 
protein accumulation occurs naturally. New world monkeys 
like squirrel monkeys experience neurotoxicity resembling 
that of humans, with possession of Aß (1-40) and Aß (1-42) 
of particular interest. These peptides accumulate and 
aggregate to form Aß plaques [4]. Thus, these models are 
favorable to study the propagation of the Aß protein and 
plaque formation. 

However, primates suffer from the limitation of long 
lifespans and delayed neuropathology. Furthermore, 
cognitive symptoms are not evident and Aß and tau are found 
in smaller amounts than as seen in humans. Baboons, for 
example, only rarely have Aß accumulation and squirrel 
monkeys have no NFTs present [4]. 

Few studies have been done on TDP-43 using mammalian 
models. Mutant TDP-43 isoforms mainly remain in the 
nucleus or thinly distributed near the nucleus/in the cytoplasm 
in mice, but shuttle to the cytoplasm in primates [27], [24]. 
This distinction in the distribution of TDP-43 between mice 
and monkeys is to be noted, as it calls the reliability of the 
models into question. 

 
V. THERAPEUTIC APPROACHES TARGETING 

PROTEINS IMPLICATED IN AD 

Drugs can be used to target various aspects of AD, 
including preventing APP or TDP-43 fragmentation, reducing 
TDP-43 expression, or inhibiting PTMs of tau and TDP-43. 
In this review, the drugs targeting various aspects of TDP-43 
proteinopathies are detailed in Table 2 [15]. 

TABLE II. DRUGS TARGETING TDP-43 
 

Drug Description Model 
System 
Used 

Effects Observed 
(Interactions 
with TDP-43) 

Berberine Medicinal herb 
that can be orally 
ingested [28] 

Cell 
culture 
model 

 
 

Mouse 
model 

Reduction of 
accumulation and 
aggregation of 
TDP-43 
fragments [28] 
Decrease in levels 
of Aβ and 
phosphorylated 
tau, leading to 
improvements in 
cognitive 
symptoms 
(learning/motor 
skills and spatial 
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of investigating the prion-like properties of the TDP-43 
protein, should be seriously accounted for as it could help 
hasten the development of safer, more effective treatment 
methods for AD. 

Immunotherapy appears to be a promising path [9], [12]. 
For example, in one study [9], [26], the administration of 
antibodies decreased Aβ plaque levels and improved the 
cognitive symptoms. However, any immunotherapeutic 
treatment comes with a high risk factor. One example of a 
problem observed is vasogenic edema or encephalitis, which 
in some cases is also accompanied by hemorrhage [4]. Some 
drugs are promising, however, especially those that can slow 
the 6-stage transgression of TDP-43 through the brain. Such 
a drug could have important implications as the majority of 
AD diagnoses occur late into the disease—80% in stage 3 and 
85% in stage 4 or 5 [6]—and slowing movement of TDP-43 
can allow for earlier detection of proteinopathies. It should 
also be noted that certain drug molecules described in this 
review, such as NAC, are nutritional supplements and their 
potential as preventative/protective drugs should be explored 
in greater detail. 

Caenorhabditis elegans models have been used 
extensively to study AD, contributing to major advances in 
the repertoire of this disease [22], [33]. Drosophila 
melanogaster is another common model organism. The C. 
elegans worms and D. melanogaster flies can be rapidly 
multiplied at low costs [33], [34], such that they are a 
convenient choice for in vivo studies, although phenotypic 
features may not resemble that of humans. For mammalian 
models, numerous ethical guidelines must be considered. 
Therefore, there is no ideal model organism to study AD, so 
the model should be selected cognizant of what aspect needs 
to be studied. 

Mutations and PTMs play vital roles on the behavior of 
TDP-43 and its consequent effect on AD cases. Most cases of 
AD have been associated with mutations in the APP, PSEN1, 
PSEN2 genes among others. These mutations should be 
studied further, including their interaction with the TARDBP 
gene. The interaction of different PTMs could also be 
explored regarding effects on pathogenesis. as ubiquitination 
and truncation appear to drive further neurotoxicity together 
[18]. Overall, the PTMs of TDP-43 seem to be interrelated 
and codependent in certain situations, and hence they pave the 
way for the use of interesting study designs in order to further 
understand the role of TDP-43 in AD. 

 
 

VI. DISCUSSION 
Studies investigating the role of TDP-43 in AD is still 

relatively minimal. Research has mainly focused upon ALS 
and FTLD, with relatively few studies directly extending this 
research to TDP-43 proteinopathies occurring in AD. Further 
studies are required to determine any reliable correlations 
between AD and TDP-43. The regulation of the Aβ/tau- 
protein by TDP-43 is unclear, so the interactions of TDP-43 
requires further exploration [11]. This different perspective, 

VII. CONCLUSION 

The gravity of this situation, in which both the diagnosis 
and treatment/prevention of AD is unclear, is not to be 
understated. Different mechanisms by which drugs can target 
TDP-43 in AD brain tissues must be explored further. The 
relationship between TDP-43 and AD is not definite but has 
strong supporting evidence, indicating that more research is 
required to directly associate both. Although TDP-43 is not 
prevalent in all AD cases, it presents a novel approach due to 

   memory) [29], 
[28] 

N-Acetyl- 
cysteine (NAC) 

Compound with 
antioxidative 
properties [15] 

- Modification of 
abnormal 
cytoplasmic 
accumulation of 
TDP-43 in 
neuron-like cells 
and reduction of 
toxic effects due 
to arsenite- 
induced 
insolubility and 
ubiquitination [1 
5] 

Dexamethason 
e 

Synthetically 
produced steroid 
hormone 
(glucocorticoid) 
[15] 

Transgeni 
c mice 
model 

Increase in TDP- 
25 solubility, 
improving 
cognitive 
symptoms [15] 

Epigallocatechi 
n gallate 
(EGCG) 

Polyphenolic 
plant compound 
found [30] 

- Conversion of Aß 
protein, synuclein 
protein (eg- α- 
synuclein) and 
yeast prion (PSI), 
which tend to 
form amyloid 
deposits, into 
harmless 
oligomers [15] 

Curcumin 
Dimethoxy 

A compound, 
specifically 
monocarbonyl 
dimethoxy [15] 

- Reduce toxicity 
induced by 
mutant TDP-43 
and halt 
aggregation due 
to pathological 
TDP-25 [15] 

QBP1 (PolyQ 
peptide binding 
1) 

Peptide sequence 
targeting 
polyglutamine 
sequences 
reminiscent of 
amyloid fibrils 
[31] 

In vitro 
models 

Binding and 
inhibition of 
amyloid fibril 
production by 
targeting the Q/N 
rich CTD of 
TDP-43 [15] 

Rolipram Drug capable of 
inhibiting 
phosphodiesteras 
e-4 enzyme 

Transgeni 
c mice 
models 

Decrease in levels 
and aggregation 
of TDP-43 in 
specific neurons 
[15] 

Riluzole Drug clinically 
approved to treat 
ALS [15] 

- Decrease in TDP- 
43 interactions in 
a dose-dependent 
fashion [32] 
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its   prion-like   characteristics.   The   TDP-43  protein  cou[1ld7] S. Farina, F. Esposito, M. Battistoni, G. Biamonti, and S. Francia, “Post- 

therefore pioneer breakthroughs in studies directed towards a 
more comprehensive knowledge of AD with the objective to 
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Human Neural Stem Cell Perilesional Transplant Potential 
Recovery in Penetrating Traumatic Brain Injury 

Francesca Froio 
 
 
 

Abstract— Traumatic brain injury (TBI) is a leading cause of 
death and disability in the United States [1-5] Despite exceeding 
the death rate of cancer by 3.5 times, there is inadequate 
treatment that directly targets the TBI lesion, in particular the 
lesions due to penetrating traumatic brain injury (pTBI)[1]; 
pTBI is a niche area of TBI injuries that focuses on a foreign 
object entering and harming the brain [2]. Since the discovery of 
neural stem cells in the subventricular zone (SVZ) and dentate 
gyrus (DG), exploration of transplantation treatment has 
become a topic of interest [6-8] The aim of this study was to 
understand how stem cell treatments could be a optimized to 
address penetrating traumatic brain injury. It was initially 
thought that neural cells were non regenerative in central 
nervous system (CNS) injuries and that adult neurogenesis is 
limited in the SVZ and DG. However, neural stem cells are still 
present within the subventricular cortex after the injury. This 
demonstrates how transplanting endogenous cells could be a 
better treatment option in comparison to the current treatments 
that only mitigate secondary injuries and symptoms[3,9,10] 
Indeed, a growing number of experiments and animal trials 
have shown that human neural stem cells (hNSCs) transplanted 
perilesional to the cavity have the potential to aid pTBI recovery 
[2,5,11,12]. 

function and form) within the resulting cavity, explicitly in the 
procephalic cyst, reveals a compelling future treatment option 
for the most important consequence of pTBI: neuronal loss 
[1,2,5-7,9,11,15,16,19-21]. Neurologists have demonstrated 
evidence of proliferation, differentiation, engraftment (growth 
of transplanted cells and successful interaction with new 
environment), reduced inflammation, and improvement of 
motor and cognitive deficits post hNSC transplant 
[2,5,9,11,15]. 

To explore how hNSCs could be an improved treatment 
option for the lost neurons in pTBI, primary and review 
journals demonstrating existing model hNSC transplantation 
were examined. Twenty plus journals from sources, such as 
PubMed, fell within the last decade of research. Key search 
words incorporated in the research process included 
perilesional, hNSC, pTBI, transplant, degeneration, and TBI in 
general. After organizing the data in accordance to the paper 
outline, original figures were curated utilizing Biorender. 
While research and primary experiments on the subject are 
limited, present data suggests that hNSCs may be a viable 
treatment option for pTBI. 

 
II. PENETRATING TRAUMATIC BRAIN INJURY 

 

I. INTRODUCTION 

In the United States, around 1.7 million TBI cases are 
reported each year [13]. Specifically, pTBI contributes to the 
majority of firearm deaths [13]. That is about 20,000 
headshots occur annually, and 70% of severe blast injuries 
result from pTBI [4,14]. Often pTBI leaves its patients with a 
lower life quality and long term disabilities such as 
Alzheimer's Disease, seizures, and neuroendocrine 
dysregulation. It also poses an economic burden costing $76.5 
billion dollars for both indirect (loss in the workforce, 
emotional, psychosocial burdens, etc) and direct (emergency 
treatment, hospitalization, healthcare, etc.) expenses per year 
[13]. Despite this, there are presently no effective treatment 
methods for pTBI as current treatment of pTBI is primarily 
focused on managing secondary injury and symptoms 
[2,5,9,11,15].Therefore there is a need for more effective 
treatment methods that target the pTBI lesions directly. That 
is, therapies that are aimed at replacing the lost neurons within 
the resulting brain cavity. 

Human neural stem cells hNSCs and their potential to 
promote proliferation ( the increase in the number of such cells 
as a result of cell growth and division) and differentiation (a 
process in which young, unspecialized cells inhibit individual 
characteristics from their environment and adopt a specialized 

 

 
 

Figure 1: Representative of a probe or projectile penetrating the brain. 
Surrounding the lesion illustrates secondary damage at the cellular level, such 
as apoptosis, axonal damage, demyelination, and the formation of a 
porencephalic cyst (created using Biorender). 

pTBI is defined as when an object breaches the skull, dura, 
and damages the parenchyma. Roughly, pTBI includes all 
traumatic brain injuries other than blunt head trauma (see 
Figure 1) [2]. Generally, when the projectile travels through 
the brain parenchyma, it causes a transient sonic wave which 
crushes the soft brain tissue and cultivates a permanent track 
of injury [3]. The severity of pTBI is heavily dependent on the 
velocity of the object at the point of penetration [3,6]. High 
velocity penetration consists of injuries produced by bullets or 
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shell fragments from direct trauma or shockwave injury 
surrounding brain tissue. On the other hand, low velocity 
penetration derives from sharp objects, such as a knife, causing 
direct trauma to brain tissue [2,16]. Besides velocity, the injury 
caliber is also determined by the intracranial path and 
energy/speed of object entry [3,14]. pTBI that contacts across 
the midline, passes through ventricles, or comes to rest in the 
posterior fossa, holds higher mortality rates in addition to 
projectiles maintaining higher velocity [3,14]. Consequently, 
the projectiles also determines the primary and secondary 
injury’s austerity. Physics aside, other external factors 
determine the injury’s severity. For instance, old age typically 
leads to a worse prognosis along with the pTBIs resulting from 
suicide attempts (due to closer proximity) [3]. 

 
III. PRIMARY AND SECONDARY INJURIES 

RELATED TO PTBI 
Common primary injuries of pTBI include hemorrhage 

(blood loss), hematomas (blood clotted tissue), and 
parenchymal contusions (bruise of brain tissue) [1-3]. The risk 
of local wound infections, meningitis, ventriculitis, or cerebral 
abscess is also particularly high in pTBI patients due to 
contaminated foreign objects, skin, hair, and bone fragments 
along the projectile track [3-14]. But, one particularly evident 
resulting injury would be a porencephalic cyst (PC). When an 
object permeates the brain, a cavity typically results within the 
cerebral hemisphere. A PC is common in pTBI patients due to 
inflammation from the limited pool of hNSCs.2 If CSF fills the 
cavity and affects the brain’s communication with the 
ventricular system, this indicates the presence of a PC and is 
followed by a diagnosis of porencephaly, which is verified by 
a computed tomography (CT) scan [17]. Symptoms of a PC 
include visual field defects and brain behavior mimicking the 
presence of a stroke or brain tumor. 

 
IV. CURRENT TREATMENT 

A patient with pTBI is managed by a medical team that 
takes note of key information such as duration of loss of 
consciousness, seizures at any point in time, comorbidity 
(meaning the simultaneous presence of two diseases or 
conditions in a patient), and if any anticoagulants or 
antiplatelets (substances used to prevent and treat blood clots) 
were used [14].This early activation from the trauma team may 
aid in providing recognition of polytrauma (severely injured 
patients usually with two or more severe injuries in at least two 
areas of the body and an accurate severity assessment, 
considering the entry and exit points of the injury [3,14]. 
Primary analysis utilizing various neuroimaging techniques 
aid professionals in the evaluation and prognosis of pTBI. The 
Glasgow coma scale (GCS) is commonly taken of pTBI 
patients to scan for intracranial pressure [3,14]. A CT scan is 
also taken of a pTBI patient to evaluate the mass lesion or 
cerebral edema along with identifying the extent of any 
intracranial injury [3,14]. As this brief explanation of the 
process is undertaken in the current treatment indicates, there 
is a strong emphasis on resolving secondary injuries and 
symptoms rather than neuronal loss or axonal damage. 

V. STEM CELLS 
Stem cells (SC) are unspecialized, pluripotent cells, or 

cells that have the ability to give rise to any other type of cell 
within the body [7,8,18]. SCs differ from mature cells as 
mature cells are specialized and maintain a set function while 
SC’s pluripotency makes them unique [14]. In order to be 
characterized as a stem cell, the cell must be able to self-renew 
(produce new stem cells) and differentiate (specialize into a 
specific cell type) [18]. Different classifications of stem cells 
affect these properties, as some stem cells might be 
multipotent and only give rise to cells in a specific family such 
as blood cells or totipotent and can form all cell types [8,11]. 

 
VI. EMBRYONIC STEM CELLS 

Embryonic stem cells (ESC), while they are justifiable for 
TBI treatment as they maintain established protocols for 
maintenance in culture and are pluripotent (or able to give rise 
to any type of cell), are not researched thoroughly in current 
animal models of pTBI compared to hNSC [20]. Furthermore, 
generation of ESC is insufficient, unsure whether they would 
be rejected if used in transplants [20]. Therapies that use ESC 
lack concrete results and if derived directly from ESC 
undifferentiated culture prep can cause tumors and promote 
cancer development [20]. Applying hNSCs would avoid 
potential ethical issues associated with cell harvesting along 
with their multipotency with respect to differentiation into 
multiple neural phenotypes. 

 

 
Table 1. Experimental models of stem cell transplants in TBI. 
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Differentiation and function improvement have been 
present in hNSCs experimental models already. At the cellular 
level, hNSC were also able to differentiate into neuronal and 
glial lineages, mitigate axonal damage, recapitulate host neural 
pathways, improve host neuron activity patterns and migrate 
beyond the lesion location (see Table 1) 
[5,10,12,20,21].Within the proliferation induced by hNSC 
transplant, the expression of nestin (cytoskeletal intermediate 
filament initially characterized in neural stem cells) was high 
post pTBI in the animal hNSCs transplant models 
[5,11,16,21]. Aside from differentiation, at the cellular level, 
hNSCs have restored expression of plasticity related Arc in 
host tissue, which has a key role in synaptic plasticity and 
memory consolidation. These results indicate that hNSCs 
transplantation in pTBI had rebuilt neuronal function [16].. 
However, it is important to keep in mind that it takes 1-3 
months for hNSCs to fully differentiate into neurons, which 
explains why in most studies, after one week, the implanted 
neurons remained rounded and undifferentiated [11]. 

 
VII. MESENCHYMAL STEM CELLS (MSC) 

While they are multipotent and have easier accessibility 
(because they can be isolated from various tissues), MSC 
treatment is not aimed to replace lost neurons, which is the 
main objective in any CNS stem cell transplant [13,19].An 
existing study incorporating MSC confirms these concerns as 
the study’s inconsistency with cell quantity injected revealed 
no long-term engraftment and survival issues [13,20]. 

hNSC engraftment has been demonstrated extensively in 
experimental models. For instance, hNSCs were able to 
achieve 90% engraftment while interacting with existing 
neural microenvironments and reduce astrological scarring 
(scars evident in brain tissue) [2,5,10,15,16,20]. Although, in 
certain cases, transplanted hNSCs did not have any significant 
effect on reducing axon damage, hNSCs presents the best 
possible option for pTBI treatment due to their verified 
engraftment, lesion size reduction, and improvement of 
cognitive and motor deficits in rat pTBI and TBI models (see 
Table 1) [2,5,9–13,15,2]. 

 
VIII. NEURAL STEM CELLS (NSCS) 

NSCs influence neuroblast migration toward the injury 
site, number of residential neurons and glial cells, astrogliosis, 
and locomotor recovery [11]. . That being said, hNSCs 
perform better compared to NSC as rat NSC gave rise to 27% 
new neurons while hNSCs gave rise to 57%.5 hNSCs have also 
illustrated extended migration and differentiation outside the 
damaged tissue in cortical areas, the blood brain barrier 
(BBB), into vascular and endothelial cells, the medial 
ipsilateral cortex, the contralateral corpus callousness, and 
surrounding brain tissue [2,5,10,12,20,21]. Engraftment of 
hNSC has also been recognized long term, surpassing 5 
months at least post transplantation and differentiation into 
mature neurons, astrocytes, and oligodendrocytes [5,19,20]. 

IX. LOCATION OF STEM CELLS 
TRANSPLANTATION 

Location of hNSC transplantation influences the 
engraftment rate, migration, and impact on spatial and physical 
improvement [11,21]. Post pTBI, the resulting cavity lacks 
structural support and promotes apoptosis and neuronal death 
rather then engraftment [6]. Minutes to a few months after the 
pTBI was formed, pro-inflammatory cytokines that mobilize 
immune and glial cells to the injury environment, causing 
edema, inflammation, and demyelination (damage to the 
myelin sheath that surrounds neuronal fibers) [11]. The natural 
microenvironment at the brain with a raw pTBI cavity is not 
suitable for optimal success of transplanted stem cells, hence 
why transplanting the cells around the lesion would produce 
greater recovery and has been proven to do so in existing rat 
pTBI models [11,20,2]. 

An intralesional transplantation refers to the hNSC being 
transplanted directly into the resulting injury or cavity. A 
perilesional transplantation indicates that the subject was 
inserted around the cavity [2]. Comparing the two hNSC 
methods within a Sprague Dawley rat model of pTBI, the 
results of lesion size and motor cortex sparing of the 
perilesional group were significantly greater compared to the 
intralesional (see Figure 2) [2]. The study’s foot fault test 
measured physical and cognitive deficits post transplantation. 
While there was significant lesion reduction and cortex sparing 
between the two groups, the test revealed insignificant data 
between the two in engraftment and behavioral difference. 
This leaves a gap in reasoning since significant cortex sparing 
should evidently produce significant behavioral differences.2 
Nonetheless, the perilesional transplantation lead to greater 
tissue/cortex preservation and should continue being tested 
and evaluated moving forward [2,5,12]. 

 
 

 
Figure 2. Perilesional transplantation compared to intralesional. 

Illustration of rat brain post experimental pTBI from the ventral view. 
Displaying the transplantation of hNSC, while demonstrating the difference 
between a perilesional and intralesional transplant in relation to the cavity 
(made using Biorender). 

Another study confirmed the results previously presented 
as hNSCs reduced lesion size and increased neuronal 
differentiation through a perilesional transplantation.5 Two 
main groups were observed: the sham or placebo group that 
had a mimicked pTBI but no cells transplanted (control group) 
and the transplant group that received the pTBI and cell 
transplantation. Even though latency was not significant 
between sham and transplant groups, this model conveyed the 
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perilesional transplant method reliable and viable, with 43% 
engraftment exhibited [5]. Previous animal models of 
transplanted hNSCs in other locations, such as contralaterally, 
or through a scaffold, left the cavity surrounded by glial scars, 
unfilled, and reduced migration (see Table 1) [10]. Present 
perilesional models have shown greater extent of 
differentiation and maturation [10]. 

 
X. FUTURE DIRECTIONS 

Moving forward in hNSC model experimentation for pTBI 
treatments, a few factors should be considered. Primarily, a 
larger body of animal model experiments that evaluate 
engraftment and proliferation beyond two months should be 
conducted to work toward a potential human model. Along 
with engraftment, growth factors, and biogenic factors, 
promotional influences in differentiation should be considered 
further. Immunosuppression should also be acknowledged 
because of its critical nature in hNSC transplantation. As 
preclinical studies of TBI have generally established that 
hNSC transplantation was neuroprotective, the original lack of 
neuronal replacement is attributed to robust host immune 
system response rejection, which can be lessened through 
immunosuppression and promote greater engraftment in future 
studies. 

 
XI. CONCLUSION 

In summary, pTBI is a nationwide issue that could be 
ameliorated through hNSC in clinical practice. Current pTBI 
treatment, while good at managing secondary injury and 
symptoms, does not address the lost neurons nor the lesion 
head on. hNSC’s potential to interact with host neural 
networks and restore neural connections effectively has been 
demonstrated through numerous animal models. By extending 
experiments past two months and observing long lasting 
activity of perilsionally transplanted hNSC, neurologists will 
be able to gauge how this treatment would function in human 
brains. Future studies should also focus on reducing the lesion 
along with behavioral and physical improvements, utilizing a 
wide variety of tests, for instance the Morris Water Maze test 
or the foot fault test to optimize progress. While further safety 
and mechanistic studies are warranted prior to the clinical trial 
phase, there is good evidence in support of a hNSC transplant 
as a treatment option for pTBI. 
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Abstract— Glioblastoma multiforme (GBM) is one of the most 

common forms of malignant brain cancer. Despite 
advancements in technology and treatment over the past century, 
GBM remains largely incurable. Standard approaches for 
treatment include surgery and combinations of radiotherapy 
and chemotherapy, but factors such as the highly selective blood- 
brain barrier have made treating GBM and other brain diseases 
extremely difficult. However, immunotherapy or “personalized 
medicine” integrated with chemotherapy or radiotherapy may 
become the future for targeting GBM tumors and other brain 
diseases. This review evaluates the mechanisms and efficacy of 
standard drugs such as temozolomide and bevacizumab, as well 
as novel advancements in the field, such as nano-mediated drug 
delivery systems (NDDS) and the rise of immunology as a basis 
for treating GBM. 

I. INTRODUCTION 

Accounting for more than 78% of brain cancers [1] 
and causing almost 15,000 deaths every year, glioblastoma 
multiforme (GBM) is one of the most common and aggressive 
malignant tumor forms in the central nervous system. GBM 
is characterized as a high-grade intra-axial tumor because it 
interferes with brain tissue [1]. Tumors are categorized as 
“low-grade” or “high-grade” depending on their invasiveness 
and growth rate [2], with low-grade cancers growing more 
slowly with less likelihood of metastasizing, or spreading to 
other sites of the body, than high-grade cancers [1]. GBM 
develops in glial cells, cells that protect neural tissue, causing 
a toxic buildup of glutamate, an excitatory neurotransmitter 
for cell signaling [3]. The excess glutamate kills surrounding 
neurons, creating brain space for the tumor to expand [4]. 

A variety of factors are taken into consideration 
when determining treatment, which may include varying 
combinations of surgery, radiation, and chemotherapy. 
Currently only two drugs, temozolomide and bevacizumab, 
are FDA-approved to treat GBM [5]. Unfortunately, these two 
chemotherapy drugs have had very limited impact on GBM 
patient survival rates [6]. Developing alternative and targeted 
therapies has posed a challenge as glioma tumor cells are 
protected by the blood-brain barrier (BBB), which is a highly 
selective semipermeable membrane that acts to protect the 
brain from pathogens and infections. Due to the barrier’s 
highly selective permeability, many therapies are unable to 
cross this boundary [7]. This review will discuss traditional 
treatments and potentially new technology for the treatment 
of GBM. 

 
II. TRADITIONAL TREATMENTS 

One class of the oldest chemotherapy drugs used for 
GBM and other cancer forms is alkylating agents, which are 
able to permeate the BBB [8], making them an optimal choice 
for GBM treatment. Alkylating agents are used in cancer 

therapies due to their ability to prevent cells from replicating 
by inflicting damage to the cell’s DNA [9]. Temozolomide 
(TMZ) is a typical alkylating agent used for GBM therapy, 
usually in conjunction with radiotherapy. The drug 
methylates DNA guanine bases [10], which results in 
alkylation of the DNA and DNA damage. Subsequently, this 
triggers apoptosis of malignant cells [11]. However, some 
tumor cells can become resistant to TMZ’s effects, especially 
if the tumor cells have mutated and contain the gene MGMT 
that allows the cancerous cells to repair the DNA damage, 
preventing apoptosis and continuing the uncontrolled 
proliferation of the damaged cells [12]. Though TMZ-based 
chemotherapy demonstrates a comparable improvement in 
the treatment of patients who have high-grade gliomas, the 
median increase in survival for patients with GBM is only 2.5 
months [13]. Recent studies also indicate that 60-75% of 
patients with GBM derive no benefit in regards to increased 
lifespan and quality of life from treatment with TMZ, 
demonstrating that the drug is only a modestly effective 
chemotherapy [13]. Additionally, 15-20% of patients who 
were treated with TMZ developed significant toxicity [14] 
and side effects such as amnesia and paralysis [15]. While 
TMZ is a widely-used drug, there is a significant need for 
chemotherapy or treatment with higher efficacy and safety. 

Failure in treating GBM with TMZ chemotherapy 
led to the development of monoclonal antibodies and the 
introduction of targeted immunotherapies. Monoclonal 
antibodies have been used in therapy processes because of 
their high affinity for specific proteins involved in brain 
tumors and other cancers [16]. In 2004, the FDA approved 
bevacizumab (BEV), which inhibits angiogenesis, the 
development of new blood vessels, by neutralizing and 
blocking vascular endothelial growth factor (VEGF), a 
signaling protein that guides new vessel formation [18]. By 
targeting tumor growth mechanisms and inhibiting cell 
growth and division, BEV is able to block oncogenic 
signaling. Researchers have shown that glioma cells express 
and secrete VEGF, which has a positive correlation with 
increased tumor strength and aggressiveness. Since vascular 
proliferation is a hallmark of glioblastomas, [19], [20], BEV 
and its VEGF targeting mechanisms have been introduced for 
GBM. 

With regards to GBM, bevacizumab slows tumor 
growth, but it does not cure the actual tumor itself or prolong 
overall patient survival time [16]. Additionally, rebound 
phenomena such as tumor recurrence and regrowth are often 
observed after discontinuation of BEV therapy [21]. Adverse 
side effects, such as hypertension and proteinuria are also 
associated with BEV usage [22]. While BEV has been shown 
to improve the quality of life for patients and has slight 
efficacy in recurrent GBM [23], [24], it is still only modestly 
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effective in treating GBM overall. With the need for more 
effective treatment, the basic mechanism of bevacizumab as 
a monoclonal antibody has led to the development of new 

 

immunotherapies and advanced technology systems in 
treating GBM. 

 
 

Figure 1: Bevacizumab is a monoclonal antibody that inhibits angiogenesis, 
the process by which new blood vessels form. It does so by blocking vascular 
endothelial growth factor (VEGF), a signaling protein that guides new vessel 
formation and is expressed in glioma cells. It has led to the development of 
new immunotherapies and advanced alternative treatment options, such as a 
vaccine targeting VEGF receptors in neurofibromatosis type 2 [62]. 

III. NOVEL TREATMENT OPTIONS 

Though traditional drugs have had some limited 
success in treating GBM, nanotherapeutic drug delivery 
systems (NDDSs) and nanocarriers, transport vehicles for 
drugs, are rising in popularity as new alternative targeted 
cancer treatments. Compared to traditional drugs, NDDSs 
have been shown to have increased advantages when it comes 
to treating cancers, such as improved stability, enhanced 
permeability, and highly accurate targeting [25], [26]. 
Additionally, they have been shown to overcome cancer- 
related drug resistance by targeting resistance mechanisms 
including defective programmed cell death and 
overexpression of transporters [27]. Using NDDSs for 
treatment of brain cancer has become a promising alternative, 
as it is more effective at transporting chemotherapeutics 
across the BBB than traditional therapies and has minimal 
side effects on healthy, surrounding tissue [28], [29]. Dp44mt 
(Di-2-pyridyl ketone-4, 4-dimethyl-3-thiosemicarbazone) is 
a novel glioma-targeted nano-therapeutic that has been found 
to specifically target its toxicity towards glioma cells with no 
impact on the surrounding healthy tissue [28], [29]. When 
tested in mice, the Dp44mt nanoparticles reduced tumor 
growth by 62%. Other chemotherapies, such as TMZ and 
doxorubicin only reduced tumor growth by 16% [27], [30]– 
[32]. This may lead to better prognosis, and Dp44mt may 
serve as a more effective treatment for GBM in humans. 

Attached to the nanocarrier, Dp44mt has a glioma- 
targeted ligand to Interleukin-13 (IL-13), which is found on 
gliomas [28]. In experimental studies, researchers found that 
Dp44mt’s conjugation with IL-13 receptors on the tumor 
enhanced glioma cell uptake of the nanocarrier and allowed 
for more successful permeation of the BBB [28]. Dp44mt is 

an iron chelator, which extracts excess iron from cells. 
Though iron is not the underlying cause of many diseases, it 
does play a role in the rate of disease progression through 
facilitation of cellular growth and proliferation [33]. For 
cancer cells, the chelator removes the iron they need for 
maintaining basic cellular functions, thus starving them [34]. 
Dp44mt, with the use of a nanocarrier, is the first instance of 
testing a nano-therapeutic system on brain tumors; it has 
yielded successful results, as this chelator has been able to 
overcome multidrug resistance, a common trait of high-grade 
tumors that renders them immune to chemotherapies [35]. 

While the drug is still undergoing numerous trials 
before reaching FDA consideration for approval, certain 
components of the drug, such as the nanoparticles used to 
create the carrier, have already been approved [29], [36]. 

Though a novel form of targeted therapy, 
nanocarriers and nanotherapeutic drug delivery systems hold 
promise for the future of cancer therapies. However, as this is 
still a technology undergoing preliminary testing, the drug’s 
success in animal models may not translate completely to 
patients, and side effects are still unknown in humans. With 
the uncertainty surrounding this new technology combined 
with the low efficacy and adverse side effects of traditional 
treatments, research has found focus on personalized 
immunotherapy. 

IV. RISE OF PERSONALIZED IMMUNOTHERAPIES 

Vaccines are among the most standard forms of 
immunotherapy for bacteria and viruses. Now, vaccines are 
on the rise to treat diseases such as Alzheimer’s and cancer 
[37], [38]. Some vaccines that prevent certain viral infections 
such as human papillomavirus (HPV) and hepatitis B have 
been modified to serve as cancer vaccines [37]. Due to this 
repurposing, vaccine therapy for GBM has risen in popularity 
with the study and development of vaccines in three primary 
categories: peptide, heat-shock, and cell-based [38]–[41]. 
Currently, a recent vaccine study for human epidermal growth 
factor receptor 2 (HER2)-positive breast cancer moved 
forward after successful results in preventing cancer 
reformation [42]. In addition to being expressed in breast 
cancer, upregulated expression of HER2 has been identified 
in GBM, and could potentially be an immunotherapy target 
[43]. With the preliminary success of the HER2 vaccine for 
breast cancer, it could potentially be used as an 
immunotherapy for GBM as well. 

Several current Phase I and Phase II trials for GBM 
studying immunotherapies have shown tumor reduction and 
lifespan expansion, as 20% of patients in the study survived 
from four to five years, which is unusual considering the high 
fatality of GBM [44]. Compared to other forms of treatment, 
vaccine immunotherapies are compelling because they have 
minimal toxicity and can induce a highly patient-personalized 
anti-tumor response that may be key to eradicating GBM [40]. 

Additionally, as each vaccine is highly unique to 
each patient’s immune system, it aligns with the upcoming 
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concept of “personalized medicine” [45], [47]. Personalized 
medicine is more effective than standard medication as 
treatment is tailored to the genes of each specific person [45], 
which has been shown to have high efficacy in cancers such 
as breast cancer [46], [48]. It may make GBM, one of the most 
malignant human tumors, manageable for patients while 
reducing side effects and increasing quality of life [48]. 
However, vaccine therapy does face some challenges, as 
surgical removal or biopsy of the tumor may be necessary in 
order to identify pathology and prepare the vaccine 
accordingly [49]. Furthermore, because each vaccine is 
individualized to each patient, this treatment method may not 
be affordable for all patients. However, as more advances in 
technology development and existing trials continue, 
manufacturers may find a cheaper way to create these 
vaccines. Though it may be an expensive treatment as of now, 
the precision of personalized medicine can improve the 
overall quality of life after therapy compared to other 
treatments, and the results outweigh the cost. 

mRNA vaccines have also shown promise in regard 
to cancer immunotherapy. After vaccination, vehicle-loaded 
mRNA vaccines express tumor antigens in antigen-presenting 
cells (APCs), causing APC activation and stimulation of the 
innate and adaptive immune system [50]. mRNA cancer 
vaccines hold high promise over other vaccine forms due to 
their specific toxicity to tumor cells, increased safety, and 
cost-effectiveness [50], [51]. However, mRNA vaccines have 
had limitations such as instability in their ability to break 
down and inefficient delivery in vivo to tumor cells [52]. 
Nucleotide modifications and other alterations have been 
investigated to overcome these challenges, and numerous 
studies are underway [53]. There also is potential in 
repurposing treatments, such as the COVID-19 vaccine, to 
treat GBM. Combinations of mRNA vaccines with other 
immunotherapies may also increase the anti-tumor immune 
response. With the recent FDA approval of mRNA vaccines 
for COVID-19 and promising results of other mRNA cancer 
vaccines against aggressive solid tumors [51], mRNA 
vaccines may be a potential immunotherapy treatment for 
GBM. 

Though mainstream therapies have had limited 
success and other forms of immunotherapies are still 
undergoing trials, the development of chimeric antigen 
reporter (CAR) T-cell therapy has also shown promise in 
treating GBM [54]. The treatment relies on using the patients’ 
collected and genetically engineered cells targeting specific 
tumor-associated antigens [55]. These cells are harvested 
from the patient, modified to target particular proteins that the 
tumor expresses, then injected into the patient to destroy the 
tumor cells [56]. Once the CAR construct binds to the 
intended target antigen, the T cells are activated, prompting a 
cytokine release [57]. CAR T has been approved for use in 
other cancers, such as acute lymphoblastic leukemia and non- 
Hodgkin's lymphoma [59]. Complete remission rates for 
patients with leukemia undergoing CAR T therapy have been 
as high as 68%-93%, indicating the treatment’s high efficacy 
and potential [59], [60]. The approach used in these other 

cancers is now being applied to treating GBM [59]. There has 
been evidence that CAR T cells injected directly into the brain 
tumor tissue or spinal fluid may cause positive responses in 
patients [60], though a clinical trial is still underway for 
results to be validated. 

The efficacy of CAR T therapy is still yet to be determined in 
GBM, as only preliminary studies of CAR T in GBM have 
been conducted. Therefore, it is essential to continue studying 
CAR T in the context of GBM since prior cancer studies have 
shown CAR T’s effectiveness as a treatment option. Its 
application to GBM is still limited due to the lack of identified 
tumor-specific antigens expressed in the disease [61]. 
However, further advances in CAR T, such as multitargeting 
CAR T therapy, may be effective. Targets such as HER2, IL- 
13, and EGFRvIII have been identified as antigens involved 
in GBM, but there are numerous other antigens that have yet 
to be explored [55]. 

V. CONCLUSION 

GBM has been one of the solid tumor cancers that 
are the most difficult to treat, despite advances in recent 
technology and medicine. Current standards of care, such as 
TMZ and radiotherapy, have had limited success in treating 
patients, often resulting in a myriad of side effects that can be 
fatal, as well as a significant decrease in the quality of life for 
patients. As GBM is notoriously difficult to treat due to its 
high aggressiveness, there is a significant need for treatments 
with higher efficacy and safety. 

Immunotherapy has emerged as a promising choice 
for treatment, alongside the concept of “personalized 
medicine.” With numerous treatments under development or 
undergoing studies and trials, immunotherapies such as 
vaccines for GBM and CAR T therapy have shown positive 
results in efficacy, as well as reduced side effects. 

This review discussed standard forms of treatment 
and introduced a new perspective regarding the rise of novel 
immunotherapies for use in GBM, including vaccines and 
CAR T. With their revolutionary success in treating other 
diseases, these therapies have significant potential for GBM. 
While this review does not have an exhaustive list of therapies, 
it provides insight into novel therapeutics, building off of the 
standard treatments currently available. 

Based on the direction that these immunotherapies 
are taking, there is a significant likelihood that future clinical 
trials will place a greater emphasis on efficacy, safety, 
immune system mechanisms, and drug resistance prevention. 
With this, the future of GBM may be combinations of CAR T 
therapy, vaccines, and other modes of standard treatment, 
such as chemotherapy, radiation, surgery, etc., making the 
modern concept of “personalized medicine” a reality. 
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Figure 2: Radiation therapy and chemotherapy have been accepted as 
traditional forms of treatment for GBM but are still not sufficient. The rise of 
immunotherapy and “personalized medicine” have led to the development of 
potential new technology for the treatment of GBM, many of which are 
undergoing clinical trials and testing. 
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